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 P
RECTEDAbstract

Large amounts of gene expression data from several different technologies are becoming available to the scientific community. A common

practice is to use these data to calculate global gene coexpression for validation or integration of other ‘‘omic’’ data. To assess the utility of

publicly available datasets for this purpose we have analyzed Homo sapiens data from 1202 cDNA microarray experiments, 242 SAGE

libraries, and 667 Affymetrix oligonucleotide microarray experiments. The three datasets compared demonstrate significant but low levels of

global concordance (rc < 0.11). Assessment against Gene Ontology (GO) revealed that all three platforms identify more coexpressed gene pairs

with common biological processes than expected by chance. As the Pearson correlation for a gene pair increased it was more likely to be

confirmed by GO. The Affymetrix dataset performed best individually with gene pairs of correlation 0.9–1.0 confirmed by GO in 74% of

cases. However, in all cases, gene pairs confirmed by multiple platforms were more likely to be confirmed by GO. We show that combining

results from different expression platforms increases reliability of coexpression. A comparison with other recently published coexpression

studies found similar results in terms of performance against GO but with each method producing distinctly different gene pair lists.
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UNLarge-scale expression profiling has become an impor-

tant tool for the identification of gene functions and

regulatory elements. The development of three such

techniques, cDNA microarrays [1], oligonucleotide micro-

arrays [2], and serial analysis of gene expression (SAGE)

[3] has resulted in a plethora of studies attempting to
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Abbreviation: SAGE, serial analysis of gene expression; GEO, Gene

Expression Omnibus; GO, Gene Ontology; IEA, inferred electronic

annotation; MGC, Mammalian Gene Collection; MCE, minimum number

of common experiments; r, Pearson correlation; rc, correlation of Pearson

correlations.
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elucidate cellular processes by identifying groups of genes

that appear to be coexpressed. Our motivation for this study

was to explore the fecundity of large extant expression

datasets to identify coexpressed genes and their utility as a

resource for biological study. Coexpression data are

increasingly used for validation and integration with other

‘‘omic’’ data sources such as sequence conservation [4],

yeast two-hybrid interactions [5,6], RNA interference [7],

and regulatory element predictions [8], to name only a few.

If different platforms or datasets produce widely different

measures of coexpression it could have significant impacts

on the results of such studies. Furthermore, methods to

assess these datasets and identify a coherent, consistent

picture of coexpression will be needed.
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High degrees of consistency within a platform have been

reported for cDNA microarrays and Affymetrix oligonucleo-

tide microarrays [9–11]. The reproducibility of SAGE has

not been demonstrated as clearly the time and cost required

to produce individual SAGE libraries are high. However, a

recent study showed a high degree of reproducibility and

accuracy for microSAGE (a modification of SAGE) [12] and

preliminary analysis of SAGE replicates has demonstrated

high levels of correlation, similar to those seen for

Affymetrix platforms (A. Delaney, personal communica-

tion). Cross-platform comparisons of gene expression values

have found ‘‘reasonable’’ correlations for matched samples,

especially for more highly expressed transcripts [11,13–19].

Other comparisons have reported ‘‘poor’’ correlations

[15,18,20–24]. The correlations reported above were for

expression levels or expression changes of individual genes,

not coexpression of gene pairs. To our knowledge, only one

study has examined the correlation of coexpression results

from multiple platforms [25]. The authors compared

matched Affymetrix oligonucleotide chips and spotted

cDNA microarrays for the NCI-60 cancer cell panel. For

each platform, the calculation involved determining the

Pearson correlation (r) between expression profiles (across

60 cell lines) for all pair-wise gene combinations. Then, a

correlation of correlations (rc) between the two platforms

was determined. When all gene pairs were considered a

global concordance of rc = 0.25 was reported. As the

correlation cutoff was increased, rc improved steadily to 0.92

at a correlation cutoff of r = 0.91 (but only 28 of 2061 genes

remained). Thus, for most gene pairs there is poor correlation

of correlations for global coexpression values.

Genome-wide coexpression analyses in Caenorhabditis

elegans and Saccharomyces cerevisiae have been used with

some success to identify gene function or genes that are

coregulated [26–28]. This ‘‘guilt-by-association’’ approach

has received criticism because of high levels of noise and

other problems inherent to the methods [29] but still holds

great interest for biologists. If matched samples display

questionable levels of consistency between expression

profiles generated by different platforms the question

remains as to how effectively unmatched samples from

many different sources will compare. If two genes are co-

regulated (i.e., controlled by an identical set of transcription

factors) they should display similar expression patterns

across many conditions and be identified as coexpressed.

This is the basic premise of many gene function and regu-

lation studies. If true, large datasets from different expression

platforms should identify the same coexpressed gene pairs

even if derived from different conditions and tissues.
Fig. 1. Internal consistency and minimum common experiments analysis using the

experiments is determined as the number of experiments for which expression value

consistency. On the right axis,MCE is plotted against number of gene pairs. In genera

consistency improves as the correlation is based on more expression data. Noti

approximately rc = 0.3 with 100MCE.However, (C) the SAGE correlation continues

is not observed. Data represent mean rc value and gene pair number of 100 pseudo
ED P
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However, it may be that few genes are globally coregulated

and thus datasets comprising different samples will identify

different sets of coregulated genes. Similarly, noise and

biases inherent to the different methods may result in highly

discordant measures of coexpression, even for genes with

similar function or under similar regulatory control.

The purpose of this study was to assess the differences

between publicly available expression data for global

coexpression analyses and investigate the value of combining

multiple platforms to decrease noise and improve confidence

in coexpression predictions. We have compared large

publicly available datasets for SAGE, cDNA microarray

(cDNA), and Affymetrix oligonucleotide microarray (Affy-

metrix) platforms (Supplemental Fig. 1). We calculated all

gene-to-gene Pearson correlation coefficients and assessed

the platforms for internal consistency, cross-platform con-

cordance, and agreement with the Gene Ontology. The

Pearson correlation was chosen as a similarity metric because

it is one of the most commonly used, with numerous

published examples for Affymetrix [9,30,31], cDNA

[5,27,32], and SAGE [33,34]. Because the datasets represent

unmatched samples, a direct comparison of platforms is

challenging. Our results indicate that the three platforms

identify very different measures of coexpression for most

gene pairs with a very low correlation of correlations between

platforms. However, coexpression predictions become more

reproducible with larger datasets and each of the three

platforms performs better (identifies more gene pairs with

common GO terms) as the Pearson correlation increases.

Furthermore, gene pairs confirmed by more than one

platform (high two-platform average Pearson) were much

more likely to share a GO term than those identified by only a

single platform. Other recently published coexpression

methods (TMM, ArrayProspector) also performed well

against GO at higher scores but identified very different

gene pairs. By using the Gene Ontology to choose thresholds

of high-confidence pairs for each we identify a set of

coexpressed gene pairs that represents the best of each

approach.
Results

Internal consistency

Before performing cross-platform comparisons, it is

relevant to evaluate each platform individually to determine

how consistently different experiments from one technology

identify the same levels of gene coexpression. To this end,
pseudo-random division method. For each gene pair, the number of common

s are available for both genes. On the left axis, MCE is plotted against internal

l, as moreMCE are required, fewer gene pairs meet the criteria but the internal

ce that the (A) Affymetrix and (B) cDNA datasets appear to level off at

to improve up to nearly rc = 0.7 before no genesmeet the cutoff and a leveling

-random divisions at each MCE. Error bars indicate 1 standard deviation.
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t1.1Table 1

Summary of rc values for internal consistency analysis using different

sample division methods and MCE cutoffs t1.2

Platform Division MCE

cutoff

Gene pairs rc value t1.3

Affymetrix Random 100 4,149,092 0.925 t1.4
Pseudo-random

by GSE series

95 3,427,174 0.257 t1.5
100 3,260,557 0.253 t1.6

cDNA microarray Random 100 10,429,219 0.889 t1.7
Pseudo-random

by author

28 11,178,346 0.253 t1.8
100 9,747,169 0.273 t1.9

SAGE Random 100 2,635 0.776 t1.10
Pseudo-random

by tissue

23 577,820 0.253 t1.11
100 1,518 0.660 t1.12

Note that many different divisions are possible for each result (except

cancer/normal). Gene pair and rc values represent mean values from 100

different random or pseudo-random divisions. t1.13
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internal consistency was determined by dividing each of the

datasets in half and comparing the gene-to-gene Pearson

correlations for each subset (Figs. 1A–1C). We first divided

the data in a purely random fashion. To make the internal

consistency calculation more comparable to the cross-

platform comparisons, we also devised a pseudo-random

division, which takes into account the presence of exper-

imental replicates and very similar experimental conditions

in the datasets (see Materials and methods).

Internal consistency was found to be dependent on the

minimum number of common experiments (MCE) between

any two genes on which Pearson correlations are calculated.

MCE was defined as the minimum required number of

common or shared experiments for which any two genes

actually have values available in their respective expression

profiles (Fig. 1D).

Increasing the MCE increased the internal consistency but

decreased the number of gene pairs considered for both the

pseudo-random (Fig. 1) and the random (Supplemental Fig.

2) division methods. With the random division, and an MCE

of 100, Affymetrix showed the highest average internal

correlation of 0.925, then cDNA microarray with correlation

of 0.889, and then SAGE with correlation of 0.776. This

MCE cutoff was used by the group that provided the cDNA

microarray data [4] (E. Segal, personal communication). As

expected, the pseudo-random division, which groups repli-

cates and experimental datasets, reduced internal consisten-

cies with values of 0.253 for Affymetrix, 0.273 for the cDNA

microarray, and 0.660 for SAGE with MCE of 100 (Fig. 1).

Unfortunately, as the SAGE dataset contains only 242

samples, division into two groups of approximately 120

results in relatively few gene pairs that meet the criteria of 100

MCE (only 1518 pairs on average). Although approximately

60% of these SAGE libraries are derived from cancer

samples, we found no evidence of an effect on the

coexpression results (Supplemental Fig. 3) and therefore

included them in subsequent analysis.

Internal consistency is a measure of the reproducibility or

robustness of gene coexpression predictions similar to a

cross-validation test. This is based on the assumption that if a

gene pair is truly coexpressed based on an expression

dataset, it should be predicted as coexpressed by random

subsets of the data. The consistency increases with higher

MCE but at different rates for the three datasets because of

their different natures in terms of number of experiments and

experiment composition. Thus, it would be unfair to compare

the datasets with MCEs that resulted in different levels of

reproducibility. Studies generally choose some cutoff for a

minimum number of common experiments, such as 5, 10, or

100 [4,30,35]. In an effort to produce an unbiased

comparison of the three platforms, the pseudo-random

division was used to determine an appropriate MCE that

would generate the same internal consistency (rc = 0.25) for

each (Affymetrix MCE = 95; cDNA MCE = 28; SAGE

MCE = 23) (Fig. 1). All internal consistency correlations are

summarized in Table 1.
ED P
ROCross-platform correlation analysis

Considering that the levels of consistency between

subsets of data from a single platform were relatively low

(when replicates and similar experiments were kept together)

it is not surprising that datasets from different platforms

compared poorly against each other. All comparisons were

found to have significant but poor positive correlations

compared to randomly permuted data ( p < 0.001, 1000

permutations). Affymetrix versus cDNA showed the best

correlation of 0.102, then Affymetrix versus SAGE with

0.086, and finally cDNA versus SAGE with 0.041 (Supple-

mental Fig. 4). A Pearson rank analysis also showed

significant but poor agreement with only 3–8% better

performance than randomly permuted data (Supplemental

Fig. 5).

An analysis of correlation at different minimum Pearson

cutoffs (r cutoff) for gene pairs was performed as described

previously [25] (Supplemental Fig. 6). Lee et al. [25] ob-

served a steady increase in global concordance (rc =

correlation of correlations) up to 0.92 at an r cutoff of

0.91. Our data did not show such an obvious trend. Global

concordance stayed close to 0 (or even below) for all three

pair-wise platform comparisons up to 0.5–0.6 Pearson

cutoff. The Affymetrix/cDNA correlation did show an

improvement to rc = 0.163 ( p = 0.003, n = 289 gene pairs)

at an r cutoff of 0.65. Similarly the Affymetrix/SAGE

comparison improved to rc = 0.290 ( p = 0.028, n = 44 gene

pairs) at an r cutoff of 0.7. After these cutoffs, both

Affymetrix/cDNA and Affymetrix/SAGE comparisons

returned to rc values close to 0 (or below) and were reduced

to insignificant gene pair numbers. The cDNA/SAGE

comparison showed no significant increases in rc with any

r cutoff.

Gene ontology analysis

Since the datasets under study demonstrated little

agreement, we attempted to determine which dataset was

most ‘‘biologically relevant.’’ GO biological process
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domain knowledge [36] was used to evaluate gene

coexpression predictions for each platform. We hypothe-

sized that genes that are coexpressed will be more likely to

be involved in the same biological process. The number of

gene pairs annotated to the same ‘‘most specific’’ GO

(Biological Process) term for each platform was deter-

mined (Supplemental Fig. 7). In general, the datasets from

all platforms perform better than expected by chance.

Affymetrix performed best, followed by cDNA microarray

and SAGE, which performed about equally better than

randomly permuted data. The analysis was also extended

up the GO hierarchy to parent and grandparent terms, and

identical trends and relationships were observed (Supple-

mental Fig. 8).

A second analysis looked at the relationship between the

Pearson correlation and the performance against GO. For

each platform, the number of gene pairs annotated to the

same ‘‘most specific term’’ at different Pearson correlation

ranges was determined (Fig. 2). Generally, as Pearson

correlation for a gene pair increases it is more likely to be

confirmed by GO. With a Pearson value in the range of

0.3–0.4 or better the platforms always performed signifi-

cantly better than randomly permuted data ( p < 0.001,

1000 permutations). The improvement over randomly

permuted data was very slight for the cDNA and SAGE

datasets (2–4%). However, for the Affymetrix data, the

trend was striking. Gene pairs identified as coexpressed

with a Pearson correlation of 0.9–1.0 were confirmed by

GO in 74% of cases. Gene pairs from this list include a

large set of highly coexpressed protein biosynthesis genes

as well as a few genes involved in translational elongation

(a subprocess of protein biosynthesis) and muscle contrac-

tion. It should be noted that, in the case of the SAGE and

cDNA datasets, only a few gene pairs had Pearson

correlations >0.9 (one for cDNA, five for SAGE).

A third analysis examined the effect of averaging

platform results and comparing to individual platforms

using GO. Requiring coexpression evidence from multiple

datasets may represent a method of reducing noise and

increase our confidence that coexpressed genes are actually

coregulated. The percentage of gene pairs annotated to the

same most specific term at different average Pearson

correlation ranges was determined as above. The results

were again quite striking. With a two-platform combined

Pearson of 0.4 or greater the combined platforms all

performed significantly better than randomly permuted data

( p < 0.005, 1000 permutations). Furthermore, for any

platform combination, a gene pair with an average Pearson

correlation of r > 0.6 was much more likely to share a GO

term than a gene pair with this level of correlation in only a

single platform (Fig. 3). For example, a gene pair with a

two-platform average Pearson of 0.7–0.8 was found to

share a common GO term 40–50% of the time. Pairs with

this same Pearson range in individual datasets shared a

common GO term only 5–10% of the time, only a few

percent better than expected by chance. Gene pairs
 P
ROOF

confirmed by multiple datasets (ravg > 0.6 for any two

platforms) covered a wide range of GO categories (52 in

total) (Supplemental Fig. 9).

Comparison to other coexpression methods

Finally, an analysis was conducted to assess two other

recent coexpression studies that were published while this

analysis was in progress. The ArrayProspector method [37],

the TMM method [35], and our two-platform combination

method (2PC) were each mapped to UniProt IDs and

assessed using the same GO analysis as above. In all three

cases, we observed significantly more gene pairs with

common GO terms at higher scores (Fig. 4). For our method

(2PC), the percentage of gene pairs with a common GO

term rises sharply at a score of approximately 0.6–0.7. For

ArrayProspector this occurs at a score of approximately

0.7–0.8 and for TMM at a score of 5–6. At these cutoffs,

each method represents 2500 to 10,000 gene pairs. Each

utilizes different genes and identifies different gene pairs as

highly coexpressed. Thus, a comparison of the highest

scoring 2500 gene pairs for each found only a minimal

overlap of less than 10% (Fig. 4D).
EDiscussion

We have shown that the genes identified as coexpressed

are highly dependent on the dataset and expression platform

used. In general, we find that the more data a correlation is

based on, the more reproducible it is. When division of

samples takes similar or replicate experiments into consi-

deration, Affymetrix and cDNA internal consistencies level

off at approximately rc = 0.25 with MCE of about 90 and

30–40, respectively. The SAGE dataset continued to

improve to nearly rc = 0.6 with MCE of 80. This may

reflect the diverse nature of the SAGE dataset for which

libraries are rarely constructed from the same or similar

tissue. In contrast, it is not uncommon for many Affymetrix

or cDNA experiments to measure expression of a very

similar series of samples. A recent yeast study found that the

ability to identify coregulated genes correctly from coex-

pression analyses is highly dependent on the number of

experiments, with accuracy leveling off at 50 to 100

experiments [38]. Our results agree closely with this

observation for human data and suggest that coexpression

predictions will be most reproducible if based on 30 to 100

experiments. Furthermore, global coexpression analysis

may benefit from a greater representation of tissues and

conditions rather than greater numbers.

Given that different experimental subsets of the same

platform show poor correlation it is perhaps not surprising

that interplatform comparisons show very poor correlations

(r < 0.11). The fact that none of these datasets agree well

raises some serious questions about their use for validation

and integration with other data. There are several possible
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in the SAGE and cDNA datasets. 75% of gene pairs with correlation >0.9 calculated from Affymetrix data have the same GO annotation. Interestingly, gene pairs with very low Pearson values are less likely to

share a common GO term than randomly permuted data. Random lines represent mean values from 1000 random permutations. Error bars indicate 1 standard deviation.
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identified as coexpressed in multiple platforms (higher average Pearson) are much more likely to be confirmed by GO. Random line represents mean values

from 1000 random permutations of all two-platform combinations. Error bars indicate 1 standard deviation.
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explanations for this observation: (1) The data comprising

these datasets are so noisy as to prevent reliable identi-

fication of many truly coexpressed genes, (2) the method of

identifying coexpressed genes is inadequate, (3) the

unmatched and nonoverlapping nature of the samples that

make up each dataset results in identification of different

subsets of truly coexpressed genes, and (4) genes are under

such complex regulatory control that genes coregulated in

one cell type or tissue behave in an entirely different manner

in other cell types or tissues and are therefore not globally

coexpressed. It is likely that each of the explanations

outlined above is to some degree responsible for the lack of

concordance between coexpression analyses produced from

different datasets and different platforms. It is not the

purpose of this study to identify which is most important.

Rather, we wish to make researchers aware that the choice

of dataset or platform for integration or validation of other

data could dramatically affect their results, and methods that

integrate or combine different platforms may be more

appropriate.

The fact that intraplatform comparisons show some

correlation and improve with number of data points suggests

that some gene pairs identified are truly coexpressed.

Furthermore, the GO analysis shows that gene pairs

identified as highly coexpressed (higher Pearson correla-

tion) are more likely to share the same biological process

and thus actually be related. Similarly, gene pairs with lower

Pearson correlations were as or less likely than random

chance to share the same biological process. These results

suggest that the Pearson correlation is a useful metric and

that both high and low Pearson values have the meaning we

expect. The GO analysis did not conclusively identify a
ED
single ‘‘correct’’ platform or dataset but it did show that the

Affymetrix dataset identified more biologically relevant

gene pairs than the cDNA or SAGE dataset. However, gene

pairs coexpressed in multiple expression platforms were

much more likely to be confirmed by GO. Thus, combining

platforms appears to act as a filter, producing high-

confidence predictions from noisy datasets. This conclusion

is based on the assumption that coexpressed genes are more

likely to be biologically relevant if they share common

biological processes. Assessments using GO are limited by

issues such as the incompleteness of the ontology, the

potential for circularity (addressed in Materials and meth-

ods), experimental bias toward ‘‘well-studied’’ genes, and

inconsistencies in structure and depth. Furthermore, it is

likely that some coregulated genes will belong to different

biological processes while other genes involved in the same

process will not be coregulated. As such, an ‘‘absolute’’

performance against GO is difficult or impossible to define.

Despite these issues, we believe GO currently represents

one of the best resources for a relative assessment of

coexpression platforms or methods.

Recent investigations into the utility of combining

expression data from different high-throughput platforms

have identified highly variable levels of agreement. Based

on an analysis of a small set of matched samples using

oligonucleotide arrays, SAGE, and EST data, Haverty and

colleagues [39] caution against the combination of plat-

forms to confirm expression patterns for specific sets of

genes. However, they do suggest that such methods can be

used to extract high-confidence subsets of related genes.

We agree that for many genes a poor level of agreement

between datasets raises questions about their utility.



ORRECTED P
ROOF

ARTICLE IN PRESS

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

Fig. 4. Comparison of two-platform combination method to other recent coexpression methods. (A–C) For each method, gene pairs with higher scores are

more likely to share a common GO term. Lines with open squares represent numbers of gene pairs (right axis). Lines with closed triangles represent percentage

of gene pairs with a common GO term. Random lines represent mean values from 1000 random permutations. Error bars indicate 1 standard deviation. (D)

Venn diagram indicates overlap between the 2500 top scoring pairs for each method (not required to be in GO). Each method comprises different datasets and

has different genes. Therefore a direct comparison of method performance is difficult. Instead, the graphs illustrate that each method is capable of identifying

biologically relevant gene-pair relationships and the Venn diagram indicates that they identify very different sets of relationships. Furthermore, the GO analysis

provides a means of choosing reasonable score thresholds for each method to generate lists of high-confidence coexpressed genes.
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UNCHowever, our results do show that platform combination

methods can be extended to large sets of unmatched

publicly available expression data to produce biologically

meaningful information.

As we were nearing completion of our analysis, a similar

study using multiple microarray datasets (TMM) was

published [35]. The authors examined 60 microarray data-

sets (cDNA and Affymetrix oligonucleotide) for gene pairs

identified as coexpressed in multiple datasets. They report

that even gene pairs confirmed by only a single dataset have

better GO similarity scores than random pairs and GO score

increases steadily with the number of confirmed links. Their

method differs from ours in that experimental subsets are

analyzed separately and a ‘‘vote-counting’’ method was used

to identify gene pairs that appear highly coexpressed (above

some Pearson cutoff) in multiple sets. Our method combines

all experimental subsets into a single dataset for each

expression platform and then averages the global Pearson
correlations between platforms. Our method is also the first

to include SAGE data. A third recently published method

(ArrayProspector) used a combination of singular value

decomposition and kernel density estimation [37]. This

method combines evidence from related arrays and weights

the contribution of each array according to how well they

correlate with functional annotation.

When attempting to infer function or coregulation from

coexpression we should consider that it is likely that genes

are biologically related in a number of different ways and

therefore different methods will be required to identify each

type of relationship. For example, one pair of genes might

be ‘‘tightly’’ coexpressed only under very specific con-

ditions, whereas another gene pair might be ‘‘loosely’’

coexpressed across a broad range of conditions depending

on the regulatory elements that they share. The three

methods discussed above (TMM, ArrayProspector (AP),

and 2PC) represent three different approaches to the
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problem of identifying high-confidence coexpression for the

purpose of inferring function or coregulation. Because the

methods use different datasets and scoring methods and

comprise different gene sets, a direct comparison of the

methods is difficult. Therefore, we chose simply to assess

their respective predictions against GO independently. Thus,

we do not identify the ‘‘best’’ method but rather show that

each method is at least partially effective based on

performance against the Gene Ontology. Furthermore,

because the highest scoring pairs for each are almost

completely nonoverlapping we advocate combining the best

results of each into a single set of high-confidence

predictions. To this end we have chosen score thresholds

for each method based on GO performance (2PC > 0.65;

AP > 0.7; TMM > 7) and make available a list of 13,145

high-confidence coexpressed gene pairs (representing 2979

unique genes) (http://www.bcgsc.ca/gc/bomge/coexpression/

suppl_materials) for use in regulatory element prediction or

other integration studies.
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Materials and methods

Data sources

Human gene expression data for three major expression

platforms were collected from public sources. We used a

recently published dataset of 1202 cDNA microarray

experiments [4] representing 13,595 genes, 242 SAGE

libraries from the Gene Expression Omnibus (GEO) (http://

www.ncbi.nlm.nih.gov/geo/) representing 15,426 genes,

and 667 Affymetrix HG-U133A oligonucleotide micro-

array experiments (889 were available but 667 had PMA

detection calls) representing 8106 genes, also from GEO

(Supplemental Fig. 1). cDNA microarray genes provided

by Stuart et al. [4] were identified by LocusLink IDs [40].

Therefore this identifier was used for the other two

platforms to allow the gene intersection of the three

datasets to be determined and used for the subsequent

analyses.

Data filtering

cDNA microarray data for 13,595 genes were used as

provided by Stuart et al. [4] except for minor formatting

changes (see supplementary materials for our data). The

242 SAGE libraries ranged from 1430 to 308,589 total

tags in size with an average size of 52,723. SAGE data

were first filtered to remove tags with less than one count

in at least 10 libraries, reducing the unique tags from

609,224 to 87,521 (and total tags from 12,758,981 to

11,219,373). Next, SAGE tags were mapped to genes by

the ‘‘lowest’’ sense-strand tag predicted from RefSeq [40]

or MGC [41] sequences and then mapped to LocusLink

IDs using the DiscoverySpace software package (Varhol et

al., unpublished, http://www.bcgsc.ca/discoveryspace/),
ED P
ROOF

reducing the tag set further to 47,263 unique tags.

Generally, the lowest tag corresponded to the canonical

3V-most NlaIII anchoring enzyme recognition site (position

1) expected for the gene sequence. However, if such a

canonical match was not found, higher position (less 3V)
mappings were also accepted (see supplementary materials

for more details). In the event of discrepancy between

RefSeq and MGC, the former was taken as correct because

a larger number of tags could be mapped with this

resource (9568 vs. 6295) and was thus perceived to be

more complete. Only 297 tags with disagreements between

RefSeq and MGC are represented in the final gene set

(¨5%) (see supplementary materials for more details). If a

tag mapped to more than one LocusLink or more than one

tag mapped to the same LocusLink it was discarded,

resulting in a final set of 15,426 unique tags (2,762,500

total tags) confidently mapped to LocusLink IDs. We

mapped 22,215 Affymetrix probe IDs to 20,577 LocusLink

IDs using the most current Affymetrix annotation file for

the HG-U133A chip (www.affymetrix.com, supplementary

materials). As with the SAGE tags, probes with ambiguous

mapping to LocusLink were discarded, resulting in a final

set of 8106 genes from the Affymetrix dataset. Once

LocusLink IDs were available for all three platforms, the

intersection was determined. This subset of 5881 genes,

present in all three platforms, was used for all subsequent

analyses. The final 5881 unique SAGE tags represent

1,173,430 total tags sequenced.

Distance calculations

Ratio values for the cDNA microarray data were used as

is for the Pearson calculation. Affymetrix probe intensities

were converted to natural log values. All ln(intensity) values

were normalized by subtracting the median and dividing by

the interquartile range for the experiment [42]. Only

Affymetrix probe intensities with a ‘‘P’’ call were consi-

dered ( p value < 0.04). Intensities with ‘‘A’’ or ‘‘M’’ calls

were set to null. To compensate for different library sizes

SAGE tag counts were normalized to 10,000 tags/library

and log-transformed as follows [34]:

Tag f requency

¼ ln tag count� 10000ð Þ=total tags in libraryð Þ

SAGE tag counts of 0 were converted to nulls. In all

platforms, genes are represented by a vector of expression

values for all the experiments in the dataset. In each case,

genes have null values if not represented on that array

(cDNA), no tags were observed (SAGE), or intensity was

not significantly detected (Affymetrix). Thus, when calcu-

lating Pearson correlations between gene pairs, the number

of shared data points varied from 0 to the total number of

experiments. A minimum number of common experiments

was required for each gene pair to provide some confidence

in the value calculated (a Pearson correlation based on

http://www.bcgsc.ca
http://www.ncbi.nlm.nih.gov
http://www.bcgsc.ca
http://www.affymetrix.com
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observations from only two experiments is meaningless). A

range of MCEs was used for the internal consistency

analysis (see below) and then one minimum chosen for

subsequent analyses.

A Pearson correlation coefficient was calculated for all

possible gene pairs for each platform as a measure of

expression similarity. These calculations were performed by

a modified version of the C clustering library [43] on 64-bit

Opteron Linux machines with 8- to 32-GB memory. Please

see supplementary materials for modified C source code and

explanation of changes.

Correlation of correlations analysis

Correlation of correlations (rc) for internal consistencies

and platform comparisons were performed as previously

described [25] using the Pearson correlation function (cor)

of the R statistical package (version 1.8.1). This correlation

involves millions of data points and thus cannot be graphed

easily. Therefore, data were binned and density plots created

using the Bioconductor hexbin (version 1.0.3) add-in

function for R [44].

Internal consistency analysis

To evaluate the consistency of coexpression observed

within each platform, we divided the experiments available

and determined coexpression for each subset independently.

If a platform consistently finds coexpressed genes regardless

of the exact experiments involved, the rc will be close to 1.

To determine whether the observed rc is significant, we

repeat the procedure with randomly permuted gene expres-

sion values, expecting an rc close to 0.

Pseudo-random division method

Division was performed first randomly and then

pseudo-randomly. The pseudo-random division was nec-

essary to prevent artificially high internal consistencies

resulting from comparing mostly replicates (or very

similar experiments) in the two subsets. In many cases

(especially for the Affymetrix data) experimental repli-

cates or very similar samples exist in the dataset. The

purpose of coexpression analysis is to identify genes that

behave similarly across many conditions. The internal

consistency analysis is meant to measure how consistently

a series of experiments across different conditions would

identify the same coexpressed genes. If the two subsets of

experiments contain replicates, they are more likely to

identify the same coexpressed genes as the expression

values of the replicates will be very similar. The cross-

platform comparisons do not have this advantage because

they consist of different experiments. Thus, to make the

internal consistency calculation more comparable to the

cross-platform comparisons, we used a pseudo-random

division for subsequent analysis. Experiments were
ED P
ROOF

randomly divided into two subsets but experiments

belonging to the same experimental series (Affymetrix),

publication (cDNA), or tissue (SAGE) were required to

fall into the same subset.

Minimum common experiments analysis

Differences in the number of common experiments

between any two genes result from missing values in the

data matrices. In the case of the cDNA microarray data,

different arrays were used in different experiments, and not

all genes are present on all the arrays. For SAGE, a tag is

often observed in one library but will have a 0 tag count in

other libraries. For Affymetrix oligonucleotide arrays, an

intensity is always reported for every probe but in some

cases the Affymetrix statistical software will determine that

the probe was not reliably detected and assign an absent (A)

or marginal (M) call instead of a present (P) call for that

probe. As missing SAGE tags and probes not called P

represent genes expressed below the detection threshold of

the SAGE and Affymetrix array experiments, we did not

include these data in our analysis. Thus, for each dataset,

there were gene pairs that were rarely represented in the

same experiment and their Pearson correlations were based

on very few data points. The effect of number of common

experiments on internal consistency was determined by

calculating the internal consistency for a series of datasets

with different MCE criteria. One hundred different pseudo-

random divisions were performed to get an average internal

consistency for each MCE. An MCE was chosen for each

such that the same internal consistency would result (r =

0.25) (Fig. 1). Thus, all subsequent analyses were based on

an MCE of 95 for Affymetrix, 28 for cDNA, and 23 for

SAGE. Requiring an MCE removes gene pairs from the

datasets. To maintain an unbiased comparison, only the

1,173,330 gene pairs common to all three platform datasets

(after application of MCE criteria) were used in the

subsequent platform comparisons.

Platform comparisons

As with the internal consistency analysis, a correlation of

gene correlations was calculated, but was determined for

each of the three pair-wise platform comparisons instead of

between subsets of one platform. If the two platforms being

compared report the same correlation between each gene

pair, we expect the overall correlation between platforms

would be near 1. The global concordance (rc) was

determined for increasing gene correlation cutoffs to

compare to results obtained in the NCI-60 study [25].

Gene Ontology analysis

The GO is a controlled vocabulary that describes the

roles of genes and proteins in all organisms [36]. GO is

composed of three independent ontologies: biological
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process, molecular function, and cellular component. The

GO descriptive terms are represented as nodes connected by

directed edges that may have more than one parent node

(directed acyclic graph). A gene is annotated to its most

specific GO term description and all ancestor GO terms are

implied.

The GO MySQL database dump (release 200402 of

assocdb) was downloaded from http://www.godatabase.org/

dev/database. A GO MySQL database was built and a Perl

script was developed to extract three GO information

subspaces from the biological process ontology: (1) the

most specific GO terms for each gene, (2) the most specific

terms along with their associated parent terms, and (3) the

most specific terms along with their associated parent and

grandparent terms. Two categories of annotations were used

for the evaluation of each GO information subspace: (1) gene

annotations that did not include those derived from inferred

electronic annotations (IEAs) (1007 genes found in common

with our dataset) and (2) gene annotations including IEAs

(1426 genes found in common with our dataset). Similar

results were obtained for both non-IEA and IEA analyses.

Only the IEA results are reviewed in the figures and text.

One potential issue with our analysis is that of a circular

argument. It is possible that a coexpressed gene pair could

be found to share a common GO term that was annotated for

both genes by a coexpression analysis. Thus, coexpression

data could be confirming coexpression data. To check for

this problem we assessed the degree to which our dataset

depends on annotations inferred from expression profiles

(IEP evidence code). Only 93 of 32,669 biological process

annotations use IEP evidence, corresponding to only 73

genes with 1 or more IEP annotations. Of these, only 1 was

present in our gene set and this gene also had non-IEP

annotations. Therefore the potential for a circular argument

is negligible.

Results shown in Supplemental Fig. 7 were extracted

from the gene pair correlation data by enumerating the

number of gene pairs found at common GO terms across a

gene’s expression similarity neighborhood for each GO

information subspace. Results shown in Fig. 2 were

extracted by enumerating the number of gene pairs found

at common GO terms for each range of Pearson correlations

from 0 to 1 in increments of 0.1. The results summarized in

Fig. 3 were enumerated in a similar manner but used

average Pearson correlations between two platforms instead

of individual Pearson correlations. One thousand random

permutations of the data were conducted to determine how

often GO confirmation of a gene pair at each neighborhood

or Pearson range would occur by chance. Scripts were

written in Perl and are available at http://www.bcgsc.ca/gc/

bomge/coexpression/suppl_materials.

Comparison to other coexpression methods

Results shown in Fig. 4 were generated using the GO

analysis method described above for Figs. 2 and 3. AP
ROOF

data were obtained by request from the author [37]. Only

pairs with scores above 0.150 were provided. TMM data

were downloaded from the authors’ supplemental Web

page (see Web references) [35]. Both negative and positive

correlations were included and thus a gene pair can appear

twice. Only pairs with scores of 1 or greater were

provided. The 2PC method represents all two-platform

averages (Affymetrix/cDNA, Affymetrix/SAGE, and

cDNA/SAGE). Thus, a gene pair can appear as many as

three times if all three pair-wise averages fall within the

0–1 range graphed. All datasets were converted from their

respective identifiers to UniProt [45] and the percentage of

gene pairs found at common GO terms for each range of

scores was determined. The top 2500 pairs of each were

examined to determine the overlap in results for high-

scoring pairs. Thresholds for a high-confidence set of

coexpressed gene pairs were chosen for each method at the

approximate respective score at which performance was at

least three to four times better than random chance (2PC >

0.65; AP > 0.7; TMM > 7).
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