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Abstract:  Large amounts of gene expression data from several different technologies are becoming 
available to the scientific community.  A common practice is to use this data to calculate global gene 
coexpression for validation or integration of other 'omic data.  To assess the utility of publicly available 
datasets for this purpose we have analyzed Homo sapiens data from 1202 cDNA microarray experiments, 
242 SAGE libraries and 667 Affymetrix oligonucleotide microarray experiments.  The three datasets 
compared demonstrate significant but low levels of global concordance (rc < 0.11). Assessment against the 
Gene Ontology (GO) revealed that all three platforms identify more coexpressed gene pairs with common 
biological processes than expected by chance.  As the Pearson correlation for a gene pair increased it was 
more likely to be confirmed by GO.  The Affymetrix dataset performed best individually with gene pairs of 
correlation 0.9-1.0 confirmed by GO in 74% of cases.  However, in all cases, gene pairs confirmed by 



multiple platforms were more likely to be confirmed by GO.  We show that combining results from different 
expression platforms increases reliability of coexpression.  A comparison with other recently published 
coexpression studies found similar results in terms of performance against GO but with each method 
producing distinctly different gene pair lists. 



Dear Editor,  
  

Large publicly available gene expression datasets are increasingly being 
used to determine coexpression for validation and integration in genomic studies, 
but few methods to assess and combine these coexpression predictions are 
available.  We have just completed an extensive comparison and evaluation of 
large-scale datasets that is the first to include Serial Analysis of Gene Expression 
along with spotted cDNA and oligonucleotide microarray platforms.  Such 
datasets are currently being used to invoke genes into biological processes, 
establish genes under similar genetic regulation and indeed form the basis of 
numerous manuscripts and inferences.  Thus, we believe it is important to 
evaluate how well these datasets, being used extensively around the world by a 
large number of computational scientists, actually compare and perform. To this 
end, we assessed coexpression predictions from each dataset for internal 
consistency, cross-platform concordance, and biological confirmation with the 
Gene Ontology. Furthermore, we present an approach for combining 
coexpression predictions from different datasets to produce a high-confidence list 
of coexpressed gene pairs.   This resource is being used for identification of 
regulatory elements and is available for other genomic integration studies.  We 
believe that the appraisal and results we present would be of general interest to 
the readers of Genomics. 
 
    Best wishes,  
 
     Steven Jones 

Cover letter to Editor
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Introduction 
Large-scale expression profiling has become an important tool for the identification of 
gene functions and regulatory elements.  The development of three such techniques, 
cDNA microarrays [1], oligonucleotide (oligo) microarrays [2] and serial analysis of gene 
expression (SAGE) [3] has resulted in a plethora of studies attempting to elucidate 
cellular processes by identifying groups of genes that appear to be coexpressed.   
 

Our motivation for this study was to explore the fecundity of large extant 
expression datasets to identify coexpressed genes and their utility as a resource for 
biological study.  Coexpression data are increasingly used for validation and integration 
with other ‘omic’ data sources such as sequence conservation [4], yeast two-hybrid 
interactions [5,6], RNA interference [7] and regulatory element predictions [8] to name 
only a few.  If different platforms or datasets produce widely different measures of 
coexpression it could have significant impacts on the results of such studies.  
Furthermore, methods to assess these datasets and identify a coherent, consistent picture 
of coexpression will be needed.   
 

As increasing amounts of expression data are published and deposited in public 
databases, the issue of data integration becomes more important.  High degrees of 
consistency within a platform have been reported for cDNA microarrays and Affymetrix 
oligonucleotide microarrays [9,10,11].  The reproducibility of SAGE has not been 
demonstrated as clearly given the time and cost required to produce individual SAGE 
libraries.  However, a recent study showed a high degree of reproducibility and accuracy 
for microSAGE (a modification of SAGE) [12] and preliminary analysis of SAGE 
replicates has demonstrated high levels of correlation, similar to those seen for 
Affymetrix platforms (A. Delaney, pers. comm.).  Cross-platform comparisons of gene 
expression values have found ‘reasonable’ correlations for matched samples, especially 
for more highly expressed transcripts [11,13,14,15,16,17,18,19].  Other comparisons have 
reported ‘poor’ correlations [15,18,20,21,22,23,24]. 

 
The correlations reported above were for expression levels or expression changes 

of individual genes, not coexpression of gene pairs.  To our knowledge, only one study 
has examined the correlation of coexpression results from multiple platforms [25].  The 
authors compared matched Affymetrix oligonucleotide chips and spotted cDNA 
microarrays for the NCI-60 cancer cell panel.  For each platform, the calculation involved 
determining the Pearson correlation (r) between expression profiles (across 60 cell lines) 
for all pairwise gene combinations.  Then, a correlation of correlations (rc) between the 
two platforms was determined.  When all gene pairs were considered a global 
concordance of rc = 0.25 was reported.  As the correlation cutoff was increased, rc 
improved steadily to 0.92 at a correlation cutoff of r = 0.91 (but only 28 of 2061 genes 
remained).  Thus, for most gene pairs there is poor correlation of correlations for global 
coexpression values.   

 
Genome wide coexpression analyses in C. elegans and S. cerevisiae have been 

used with some success to identify gene function or genes that are coregulated [26,27,28].  
This “guilt-by-association” approach has received criticism because of high levels of 
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noise and other problems inherent to the methods [29] but still holds great interest for 
biologists.  If matched samples display questionable levels of consistency between 
expression profiles generated by different platforms the question remains as to how 
effectively unmatched samples from many different sources will compare.  If two genes 
are coregulated (i.e. controlled by an identical set of transcription factors) they should 
display similar expression patterns across many conditions and be identified as 
coexpressed.  This is the basic premise of many gene function and regulation studies.  If 
true, large datasets from different expression platforms should identify the same 
coexpressed gene pairs even if derived from different conditions and tissues.  However, it 
may be that few genes are globally coregulated and thus datasets comprised of different 
samples will identify different sets of coregulated genes.  Similarly, noise and biases 
inherent to the different methods may result in highly discordant measures of 
coexpression, even for genes with similar function or under similar regulatory control.  If 
true, the choice of expression platform and dataset could have significant effects on the 
outcome of integration and validation studies that use coexpression predictions. 
 

The purpose of this study was to assess the differences between publicly available 
expression data for global coexpression analyses and investigate the value of combining 
multiple platforms to decrease noise and improve confidence in coexpression predictions.  
To explore this, we have compared large publicly available datasets for SAGE, cDNA 
microarray (cDNA), and Affymetrix oligonucleotide microarray (Affymetrix) platforms 
(Suppl. Fig. 1).  We calculated all gene-to-gene Pearson correlation coefficients and 
assessed the platforms for internal consistency, cross-platform concordance, and 
agreement with the Gene Ontology.  The Pearson correlation was chosen as a similarity 
metric because it is one of the most commonly used, with numerous published examples 
for Affymetrix [9,30,31], cDNA [5,27,32] and SAGE [33,34].  Because the datasets 
represent unmatched samples, a direct comparison of platforms is challenging.  However, 
given that these datasets are being used individually in numerous studies we believe a 
relative assessment of the available data for each platform is critical.  Our results indicate 
that the three platforms identify very different measures of coexpression for most gene 
pairs with a very low correlation of correlations between platforms.  However, 
coexpression predictions become more reproducible with larger datasets and each of the 
three platforms performs better (identifies more gene pairs with common GO terms) as 
the Pearson correlation increases.  Furthermore, gene pairs confirmed by more than one 
platform (high 2-platform average Pearson) were much more likely to share a GO term 
than those identified by only a single platform.  Other recently published coexpression 
methods (TMM, ArrayProspector) also performed well against GO at higher scores but 
identified very different gene pairs.  By using the Gene Ontology to choose thresholds of 
high-confidence pairs for each we identify a set of coexpressed gene pairs that represents 
the best of each approach. 
 
Results 
Internal Consistency 

Before performing cross-platform comparisons, it is relevant to evaluate each 
platform individually to determine how consistently different experiments from one 
technology identify the same levels of gene coexpression.  To this end, internal 
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consistency was determined by dividing each of the datasets in half and comparing the 
gene-to-gene Pearson correlations for each subset (Figure 1A-C).  We first divided the 
data in a purely random fashion.  To make the internal consistency calculation more 
comparable to the cross-platform comparisons, we also devised a pseudo-random division 
which takes into account the presence of experimental replicates and very similar 
experimental conditions in the datasets (see methods).   

 
Internal consistency was found to be dependent on the minimum number of 

common experiments (MCE) between any two genes on which Pearson correlations are 
calculated.  MCE was defined as follows: 
 
MCE – The minimum required number of common or shared experiments for which any 
two genes actually have values available in their respective expression profiles (Figure 
1D). 
 
Increasing the MCE increased the internal consistency but decreased the number of gene 
pairs considered for both the pseudo-random (Figure 1) and random (Suppl. Figure 2) 
division methods.  With the random division, and an MCE of 100, Affymetrix showed the 
highest average internal correlation of 0.925, then cDNA microarray with correlation of 
0.889, and SAGE with correlation of 0.776.  This MCE cutoff was used by the group that 
provided the cDNA microarray data [4] (E. Segal, pers. comm.).  As expected, the 
pseudo-random division, which groups replicates and experimental datasets, reduced 
internal consistencies with values of 0.253 for Affymetrix, 0.273 for the cDNA 
microarray and 0.660 for SAGE with MCE of 100 (Figure 1).  Unfortunately, as the 
SAGE dataset contains only 242 samples, division into two groups of approximately 120 
results in relatively few gene pairs that meet the criteria of 100 MCE (only 1518 pairs on 
average).  Although approximately 60% of these SAGE libraries are derived from cancer 
samples, we found no evidence of an effect on the coexpression results (Suppl. Figure 3) 
and therefore included them in subsequent analysis. 
 

Internal consistency is a measure of the reproducibility or robustness of gene 
coexpression predictions similar to a cross-validation test.  This is based on the 
assumption that if a gene pair is truly coexpressed based on an expression dataset, it 
should be predicted as coexpressed by random subsets of the data.  The consistency 
increases with higher MCE but at different rates for the three datasets because of their 
different natures in terms of number of experiments and experiment composition.  Thus, 
it would be unfair to compare the datasets with MCEs that resulted in different levels of 
reproducibility.  Studies generally choose some cutoff for a minimum number of common 
experiments such as 5, 10 or 100 [4,30,35].  In an effort to produce an unbiased 
comparison of the three platforms, the pseudorandom division was used to determine an 
appropriate MCE which would generate the same internal consistency (rc = 0.25) for each 
(Affymetrix MCE = 95; cDNA MCE = 28; SAGE MCE = 23) (Figure 1).  All internal 
consistency correlations are summarized in Table 1. 
  
Cross-Platform Correlation Analysis 
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Considering that the levels of consistency between subsets of data from a single 
platform were relatively low (when replicates and similar experiments were kept 
together) it is not surprising that datasets from different platforms compared poorly 
against each other.  All comparisons were found to have significant but poor positive 
correlations when compared to randomly permuted data (p < 0.001, 1000 permutations).  
Affymetrix versus cDNA showed the best correlation of 0.102, then Affymetrix versus 
SAGE with 0.086, and finally cDNA versus SAGE with 0.041 (Suppl. Figure 4).  A 
Pearson rank analysis also showed significant but poor agreement with only 3-8% better 
performance than randomly permuted data (Suppl. Figure 5). 
 

An analysis of correlation at different minimum Pearson cutoffs (r-cutoff) for 
gene pairs was performed as described previously [25] (Suppl. Fig. 6).  Lee et al. (2003) 
observed a steady increase in global concordance (rc = correlation of correlations) up to 
0.92 at an r-cutoff of 0.91.  Our data did not show such an obvious trend.  Global 
concordance stayed close to zero (or even below) for all three pairwise platform 
comparisons up to 0.5-0.6 Pearson cutoff.  The Affymetrix/cDNA correlation did show 
an improvement to rc = 0.163 (p = 0.003, n = 289 gene pairs) at a r-cutoff = 0.65.  
Similarly the Affymetrix/SAGE comparison improved to rc = 0.290 (p = 0.028, n = 44 
gene pairs) at an r-cutoff = 0.7.  After these cutoffs, both Affymetrix/cDNA and 
Affymetrix/SAGE comparisons returned to rc values close to zero (or below) and were 
reduced to insignificant gene pair numbers.  The cDNA/SAGE comparison showed no 
significant increases in rc with any r-cutoff. 
 
Gene Ontology Analysis 

Since the datasets under study demonstrated little agreement, we attempted to 
determine which dataset was most ‘biologically relevant’.  GO biological process domain 
knowledge [36] was used to evaluate gene coexpression predictions for each platform. 
We hypothesized that genes which are coexpressed will be more likely to be involved in 
the same biological process.  The number of gene pairs annotated to the same ‘most 
specific’ GO (Biological Process) term for each platform was determined (Suppl. Figure 
7).  In general, the datasets from all platforms perform better than expected by chance.  
Affymetrix performed best, followed by cDNA microarray and SAGE which performed 
about equally better than randomly permuted data.  The analysis was also extended up the 
GO hierarchy to parent and grandparent terms, and identical trends and relationships were 
observed (Suppl. Fig. 8). 

 
A second analysis looked at the relationship between the Pearson correlation and 

performance against GO.  For each platform, the number of gene pairs annotated to the 
same ‘most specific term’ at different Pearson correlation ranges was determined (Figure 
2).  Generally, as Pearson correlation for a gene pair increases it is more likely to be 
confirmed by GO.  With a Pearson value in the range of 0.3-0.4 or better the platforms 
always performed significantly better than randomly permuted data (p < 0.001, 1000 
permutations).  The improvement over randomly permuted data was very slight for the 
cDNA and SAGE datasets (2-4%).  However, for the Affymetrix data, the trend was 
striking.  Gene pairs identified as coexpressed with a Pearson correlation of 0.9-1.0 were 
confirmed by GO in 74% of cases.  Gene pairs from this list include a large set of highly 
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coexpressed protein biosynthesis genes as well as a few genes involved in translational 
elongation (a sub-process of protein biosynthesis) and muscle contraction.  It should be 
noted that, in the case of the SAGE and cDNA datasets, only a few gene pairs had 
Pearson correlations > 0.9 (1 for cDNA, 5 for SAGE). 

 
 A third analysis examined the effect of averaging platform results and comparing 
to individual platforms using GO.  Requiring coexpression evidence from multiple 
datasets may represent a method of reducing noise, and increase our confidence that 
coexpressed genes are actually coregulated.  The percentage of gene pairs annotated to 
the same ‘most specific term’ at different average Pearson correlation ranges was 
determined as above.  The results were again quite striking.  With a 2-platform combined 
Pearson of 0.4 or greater the combined platforms all performed significantly better than 
randomly permuted data (p < 0.005, 1000 permutations).  Furthermore, for any platform 
combination, a gene pair with an average Pearson correlation of r > 0.6 was much more 
likely to share a GO term than a gene pair with this level of correlation in only a single 
platform (Figure 3).  For example, a gene pair with a two-platform average Pearson of 
0.7-0.8 was found to share a common GO term 40-50% of the time.  Pairs with this same 
Pearson range in individual datasets shared a common GO term only 5-10% of the time, 
only a few percent better than expected by chance.  Gene pairs confirmed by multiple 
datasets (ravg > 0.6 for any two-platforms) covered a wide range of GO categories (52 in 
total) (Suppl. Figure 9). 
 
Comparison to other coexpression methods 
 Finally, an analysis was conducted to assess two other recent coexpression studies 
that were published while this analysis was in progress.  The ArrayProspector method 
[37], the TMM method [35], and our 2-platform combination method (2PC) were each 
mapped to uniprot IDs and assessed using the same GO analysis as above.  In all three 
cases, we observed significantly more gene pairs with common GO terms at higher scores 
(Figure 4).  For our method (2PC), the percent of gene pairs with a common GO term 
rises sharply at a score of approximately 0.6-0.7.  For, ArrayProspector this occurs at a 
score of approximately 0.7-0.8 and for TMM at a score of 5-6.  At these cutoffs, each 
method represents 2,500 to 10,000 gene pairs.  Each utilizes different genes and identifies 
different gene pairs as highly coexpressed. Thus, a comparison of the highest-scoring 
2,500 gene pairs for each found only a minimal overlap of less than 10% (Figure 4D).   
 
Discussion 

We have shown that the genes identified as coexpressed are highly dependent on 
the dataset and expression platform used.  In general, we find that the more data a 
correlation is based on, the more reproducible it is.  When division of samples takes 
similar or replicate experiments into consideration, Affymetrix and cDNA internal 
consistencies level off at approximately rc = 0.25 with MCE of about 90 and 30-40 
respectively.  The SAGE dataset continued to improve to nearly rc = 0.6 with MCE of 80.  
This may reflect the diverse nature of the SAGE dataset for which libraries are rarely 
constructed from the same or similar tissue.  In contrast, it is not uncommon for many 
Affymetrix or cDNA experiments to measure expression of a very similar series of 
samples.  A recent yeast study found that the ability to correctly identify coregulated 
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genes from coexpression analyses is highly dependent on the number of experiments with 
accuracy leveling off at 50 to 100 experiments [38].  Our results agree closely with this 
observation for human data and suggest that coexpression predictions will be most 
reproducible if based on 30 to 100 experiments.  Furthermore, global coexpression 
analysis may benefit from a greater representation of tissues and conditions rather than 
greater numbers. 
 

Given that different experimental subsets of the same platform show poor 
correlation it is perhaps not surprising that inter-platform comparisons show very poor 
correlations (r < 0.11).  The fact that none of these data sets agree well raises some 
serious questions about their use for validation and integration with other data.  There are 
several possible explanations for this observation: (1) The data comprising these datasets 
are so noisy as to prevent reliable identification of many truly coexpressed genes; (2) The 
method of identifying coexpressed genes is inadequate; (3) The unmatched and non-
overlapping nature of the samples that make up each dataset result in identification of 
different subsets of truly coexpressed genes;  and (4) Genes are under such complex 
regulatory control that genes coregulated in one cell-type or tissue behave in an entirely 
different manner in others and are therefore not globally coexpressed.  It is likely that 
each of the explanations outlined above is to some degree responsible for the lack of 
concordance between coexpression analyses produced from different datasets and 
different platforms.  It is not the purpose of this study to identify which is most important.  
Rather, we wish to make researchers aware that the choice of dataset or platform for 
integration or validation of other data could dramatically affect their results and methods 
that integrate or combine different platforms may be more appropriate. 
 

The fact that intra-platform comparisons show some correlation and improve with 
number of data points suggests that some gene pairs identified are truly coexpressed.  
Furthermore, the GO analysis shows that gene pairs identified as highly coexpressed 
(higher Pearson correlation) are more likely to share the same biological process and thus 
actually be related.  Similarly, gene pairs with lower Pearson correlations were as or less 
likely than random chance to share the same biological process.  These results suggest 
that the Pearson correlation is a useful metric and that both high and low Pearson values 
have the meaning we expect.  The GO analysis did not conclusively identify a single 
‘correct’ platform or dataset but it did show that the Affymetrix dataset identified more 
biologically relevant gene pairs than the cDNA or SAGE datasets.  However, gene pairs 
coexpressed in multiple expression platforms were much more likely to be confirmed by 
GO.  Thus, combining platforms appears to act as a filter, producing high-confidence 
predictions from noisy datasets.   

 
Recent investigations into the utility of combining expression data from different 

high-throughput platforms have identified highly variable levels of agreement.  Based on 
an analysis of a small set of matched samples using oligonucleotide arrays, SAGE, and 
EST data, Haverty and colleagues [39] caution against the combination of platforms to 
confirm expression patterns for specific sets of genes.  However, they do suggest that 
such methods can be used to extract high-confidence subsets of related genes.  We agree 
that for many genes a poor level of agreement between datasets raises questions about 
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their utility.  However, our results do show that platform combination methods can be 
extended to large sets of unmatched publicly available expression data to produce 
biologically meaningful information. 
 

As we were nearing completion of our analysis, a similar study using multiple 
microarray datasets (TMM) was published [35].  The authors examined 60 microarray 
datasets (cDNA and Affymetrix oligonucleotide) for gene pairs identified as coexpressed 
in multiple datasets.  They report that even gene pairs confirmed by only a single dataset 
have better GO similarity scores than random pairs and GO score increases steadily with 
the number of confirmed links.  Their method differs from ours in that experimental 
subsets are analyzed separately and a ‘vote-counting’ method was used to identify gene 
pairs that appear highly coexpressed (above some Pearson cutoff) in multiple sets.  Our 
method combines all experimental subsets into a single dataset for each expression 
platform and then averages the global Pearson correlations between platforms.  Our 
method is also the first to include SAGE data.  A third recently published method 
(ArrayProspector), used a combination of singular value decomposition and kernel 
density estimation [37].  This method combines evidence from related arrays and weights 
the contribution of each array according to how well they correlate with functional 
annotation.   
 

When attempting to infer function or coregulation from coexpression we should 
consider that it is likely that genes are biologically related in a number of different ways 
and therefore different methods will be required to identify each type of relationship.  For 
example, one pair of genes might be ‘tightly’ coexpressed only under very specific 
conditions whereas another gene pair might be ‘loosely’ coexpressed across a broad 
range of conditions depending on the regulatory elements that they share.  The three 
methods discussed above (TMM, ArrayProspector, and 2PC) represent three different 
approaches to the problem of identifying high-confidence coexpression for the purpose of 
inferring function or coregulation.  Because the methods use different datasets, scoring 
methods, and comprise different gene sets, a direct comparison of the methods is 
difficult.  Therefore, we chose to simply assess their respective predictions against GO 
independently.  Thus, we do not identify the ‘best’ method but rather show that each 
method is at least partially effective based on performance against the Gene Ontology.  
Furthermore, because the highest-scoring pairs for each are almost completely non-
overlapping we advocate combining the best results of each into a single set of high-
confidence predictions.  To this end we have chosen score thresholds for each method 
based on GO performance (2PC > 0.65; AP > 0.7; TMM > 7) and make available a list of 
13,145 high-confidence coexpressed gene pairs (representing 2,979 unique genes) for use 
in regulatory element prediction or other integration studies. 
  
Materials and methods 
Data Sources 

Human gene expression data for three major expression platforms were collected 
from public sources. We used a recently published data set of 1202 cDNA microarray 
experiments [4] representing 13595 genes, 242 SAGE libraries from the Gene Expression 
Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) representing 15,426 genes, and 667 
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Affymetrix HG-U133A oligonucleotide microarray experiments (889 were available but 
667 had PMA detection calls) representing 8,106 genes, also from GEO (Suppl. Figure 
1).  cDNA microarray genes provided by Stuart et al. (2003) were identified by 
LocusLink ids [40].  Therefore this identifier was used for the other two platforms to 
allow the gene intersection of the three datasets to be determined and used for the 
subsequent analyses.   
 
Data Filtering 

cDNA microarray data for 13595 genes were used as provided by Stuart et al. 
(2003) except for minor formatting changes (see Suppl. Materials for our data).  The 242 
SAGE libraries ranged from 1,430 to 308,589 total tags in size with an average size of 
52,723.  SAGE data was first filtered to remove tags with less than one count in at least 
10 libraries reducing the unique tags from 609,224 to 87,521 (and total tags from 
12,758,981 to 11,219,373).  Next, SAGE tags were mapped to genes by the lowest sense 
tag predicted from Refseq [40] or MGC [41] sequences and then mapped to LocusLink 
ids using the DiscoverySpace software package (Varhol et al., unpublished, 
http://www.bcgsc.ca/discoveryspace/) reducing the tag set further to 47,263 unique tags.  
In the event of discrepancy between Refseq and MGC, the former was taken as correct.  
If a tag mapped to more than one LocusLink or more than one tag mapped to the same 
LocusLink it was discarded resulting in a final set of 15,426 unique tags (2,762,500 total 
tags) confidently mapped to LocusLink ids.   22215 Affymetrix probe ids were mapped to 
20577 LocusLink Ids using the most current Affymetrix annotation file for the HG-
U133A chip (www.affymetrix.com, Suppl. Materials).   As with the SAGE tags, probes 
with ambiguous mapping to LocusLink were discarded resulting in a final set of 8106 
genes from the Affymetrix dataset.  Once LocusLink ids were available for all three 
platforms, the intersection was determined.  This subset of 5881 genes, present in all 
three platforms, was used for all subsequent analyses.  The final 5881 unique SAGE tags 
represent 1,173,430 total tags sequenced. 
 
Distance Calculations 

Ratio values for the cDNA microarray data were used as is for the Pearson 
calculation.  Affymetrix probe intensities were converted to natural log values.  All 
ln(intensity) values were normalized by subtracting the median and dividing by the inter-
quartile range for the experiment [42].  Only Affymetrix probe intensities with a ‘P’ call 
were considered (p-value < 0.04).  Intensities with ‘A’ or ‘M’ calls were set to null.  To 
compensate for different library sizes SAGE tag counts were normalized to 10,000-
tags/library and log-transformed as follows [34]: 
 
Tag frequency = ln((tag count x 10000)/total tags in library).   
 
SAGE tag counts of zero were converted to nulls.  In all platforms, genes are represented 
by a vector of expression values for all the experiments in the data set.  In each case, 
genes have null values if not represented on that array (cDNA), no tags observed 
(SAGE), or intensity not significantly detected (Affymetrix).  Thus, when calculating 
Pearson correlations between gene pairs, the number of shared data points varied from 
zero to the total number of experiments.  A minimum number of common experiments 
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(MCE) were required for each gene pair to provide some confidence in the value 
calculated (a Pearson correlation based on observations from only two experiments is 
meaningless).  A range of MCEs was used for the internal consistency analysis (see 
below) and then one minimum chosen for subsequent analyses. 
 

A Pearson correlation coefficient was calculated for all possible gene pairs for 
each platform as a measure of expression similarity.  These calculations were performed 
by a modified version of the C clustering library [43] on 64-bit opteron linux machines 
with 8-32GB memory.  Please see supplementary materials for modified C source code 
and explanation of changes.   
 
Correlation of correlations analysis 

Correlation of correlations (rc) for internal consistencies and platform 
comparisons were performed as previously described [25] using the Pearson correlation 
function (cor) of the R statistical package (version 1.8.1).  This correlation involves 
millions of data points and thus can not be graphed easily.  Therefore, data were binned 
and density plots created using the Bioconductor hexbin (version 1.0.3) add-in function 
for R [44].  
 
Internal consistency analysis 

To evaluate the consistency of coexpression observed within each platform, we 
divided the experiments available and determined coexpression for each subset 
independently.  If a platform consistently finds coexpressed genes regardless of the exact 
experiments involved, the rc will be close to 1.  To determine whether the observed rc is 
significant, we repeat the procedure with randomly permuted gene expression values, 
expecting a rc close to 0.  
 
Pseudo-Random Division Method 

Division was performed first randomly, and then pseudo-randomly.  The pseudo-
random division was necessary to prevent artificially high internal consistencies resulting 
from comparing mostly replicates (or very similar experiments) in the two subsets.  In 
many cases (especially for the Affymetrix data) experimental replicates or very similar 
samples exist in the dataset.  The purpose of coexpression analysis is to identify genes 
that behave similarly across many conditions.  The internal consistency analysis is meant 
to measure how consistently a series of experiments across different conditions would 
identify the same coexpressed genes.  If the two subsets of experiments contain 
replicates, they are more likely to identify the same coexpressed genes as the expression 
values of the replicates will be very similar.  The cross-platform comparisons do not have 
this advantage because they consist of different experiments.  Thus, to make the internal 
consistency calculation more comparable to the cross-platform comparisons, we used a 
pseudo-random division for subsequent analysis.  Experiments were randomly divided 
into two subsets but experiments belonging to the same experimental series (Affymetrix), 
publication (cDNA), or tissue (SAGE) were required to fall into the same subset.   
 
Minimum Common Experiments Analysis 
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Differences in the number of common experiments between any two genes result 
from missing values in the data matrices.  In the case of the cDNA microarray data, 
different arrays were used in different experiments, and not all genes are present on all 
the arrays. For SAGE, a tag is often observed in one library but will have a zero tag count 
in other libraries.  For Affymetrix oligonucleotide arrays, an intensity is always reported 
for every probe but in some cases the Affymetrix statistical software will determine that 
the probe was not reliably detected and assign an absent (A) or marginal (M) call instead 
of a present (P) call for that probe.  As missing SAGE tags and probes not called Present 
represent genes expressed below the detection threshold of the SAGE and Affymetrix 
array experiments, we did not include these data in our analysis.  Thus, for each dataset, 
there were gene pairs that were rarely represented in the same experiment and their 
Pearson correlations were based on very few data points.  The effect of number of 
common experiments on internal consistency was determined by calculating the internal 
consistency for a series of datasets with different minimum common experiment (MCE) 
criteria.  100 different pseudo-random divisions were performed to get an average 
internal consistency for each MCE.  An MCE was chosen for each such that the same 
internal consistency would result (r = 0.25) (Figure 1).  Thus, all subsequent analyses 
were based on an MCE of 95 for Affymetrix, 28 for cDNA, and 23 for SAGE.  Requiring 
an MCE removes gene pairs from the datasets.  To maintain an unbiased comparison, 
only the 1,173,330 gene pairs common to all three platform datasets (after application of 
MCE criteria) were used in the subsequent platform comparisons. 
 
Platform Comparisons 

As with the internal consistency analysis, a correlation of gene correlations was 
calculated, but was determined for each of the three pairwise platform comparisons 
instead of between subsets of one platform.  If the two platforms being compared report 
the same correlation between each gene pair, we expect the overall correlation between 
platforms would be near 1.  The global concordance (rc) was determined for increasing 
gene correlation cutoffs to compare to results obtained in the NCI-60 study [25]. 
 
Gene Ontology Analysis 

The Gene Ontology (GO) is a controlled vocabulary that describes the roles of 
genes and proteins in all organisms [36]. GO is composed of three independent 
ontologies: biological process, molecular function, and cellular component. The GO 
descriptive terms are represented as nodes connected by directed edges that may have 
more than one parent node (directed acyclic graph). A gene is annotated to its most 
specific GO term description and all ancestor GO terms are implied.  
 

The Gene Ontology (GO) MySQL database dump (release 200402 of assocdb) 
was downloaded from http://www.godatabase.org/dev/database. A GO MySQL database 
was built and a Perl script was developed to extract three GO information subspaces from 
the biological process ontology: 1) the most specific GO terms for each gene; 2) the most 
specific terms along with their associated parent terms; and 3) the most specific terms 
along with their associated parent and grandparent terms. Two categories of annotations 
were used for the evaluation of each GO information subspace: 1) gene annotations that 
did not include those derived from inferred electronic annotations (IEAs) (1007 genes 
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found in common with our data set) and 2) gene annotations including IEAs (1426 genes 
found in common with our data set).  Similar results were obtained for both non-IEA and 
IEA analyses.  Only the IEA results are reviewed in the figures and text. 
 
 One potential issue with our analysis is that of a circular argument.  It is possible 
that a coexpressed gene pair could be found to share a common GO term that was 
annotated for both genes by a coexpression analysis.  Thus, coexpression data could be 
confirming coexpression data.  To check for this problem we assessed the degree to 
which our dataset depends on annotations inferred from expression profiles (IEP evidence 
code).  Only 93 of 32669 biological process annotations use IEP evidence, corresponding 
to only 73 genes with one or more IEP annotations.  Of these, only 1 was present in our 
gene set and this gene also had non-IEP annotations.  Therefore the potential for a 
circular argument is negligible. 
 

Results shown in Suppl. Figure 7 were extracted from the gene pair correlation 
data, by enumerating the number of gene pairs found at common GO terms across a 
gene’s expression similarity neighborhood for each GO information subspace.  Results 
shown in Figure 2 were extracted by enumerating the number of gene pairs found at 
common GO terms for each range of Pearson correlations from 0 to 1 in increments of 
0.1.  The results summarized in Figure 3 were enumerated in a similar manner but used 
average Pearson correlations between two platforms instead of individual Pearson 
correlations.  1000 random permutations of the data were conducted to determine how 
often GO confirmation of a gene pair at each neighborhood or Pearson range would occur 
by chance.  Scripts were written in Perl and are available at: 
http://www.bcgsc.ca/gc/bomge/coexpression/suppl_materials. 
 
Comparison to other coexpression methods 

Results shown in Figure 4 were generated using the GO analysis method 
described above for Figures 2 and 3.  ArrayProspector (AP) data was obtained by request 
from the author [37].  Only pairs with scores above 0.150 were provided.   TMM data 
was downloaded from the authors’ supplemental webpage (see web references) [35].  
Both negative and positive correlations were included and thus a gene pair can appear 
twice.  Only pairs with scores of 1 or greater were provided.  The 2-platform combination 
(2PC) method represents all 2-platform averages (Affymetrix/cDNA, Affymetrix/SAGE, 
and cDNA/SAGE).  Thus, a gene pair can appear as many as three times if all three 
pairwise averages fall within the 0-1 range graphed.  All datasets were converted from 
their respective identifiers to Uniprot [45] and the percent of gene pairs found at common 
GO terms for each range of scores determined.  The top 2,500 pairs of each were 
examined to determine the overlap in results for high scoring pairs.  Thresholds for a 
high-confidence set of coexpressed gene pairs were chosen for each method at the 
approximate respective score where performance was at least 3 to 4 times better than 
random chance (2PC > 0.65; AP > 0.7; TMM > 7). 
 
List of abbreviations: 
SAGE, Serial Analysis of Gene Expression;  GEO, Gene Expression Omnibus;  GO, 
Gene Ontology;  IEA, Inferred Electronic Annotation;  MGC, Mammalian Gene 
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Collection;  MCE, Minimum number of Common Experiments;  r, Pearson correlation;  
rc, Correlation of Pearson correlations. 
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Legends 
Table 1.  Summary of rc values for internal consistency analysis using different 
sample division methods and MCE cutoffs. 
Note that many different divisions are possible for each result below (except 
cancer/normal).  Gene pair and rc values represent mean values from 100 different 
random or pseudo-random divisions.  
 
Figure 1.  Internal consistency and minimum common experiments analysis using 
pseudo-random division method. 
For each gene pair, the number of common experiments is determined as the 
number of experiments for which expression values are available for both genes. On 
the left axis, MCE is plotted against internal consistency.  On the right axis, MCE is 
plotted against number of gene pairs.  In general, as more MCE are required, less 
gene pairs meet the criteria but the internal consistency improves as the correlation 
is based on more expression data.  Notice that the Affymetrix (A) and cDNA (B) 
datasets appear to level off at approximately rc = 0.3 with 100 MCE.  However, the 
SAGE correlation (C) continues to improve up to nearly rc = 0.7 before zero genes 
meet the cutoff and a leveling is not observed.  Data represent mean rc value and 
gene pair number of 100 pseudo-random divisions at each MCE.  Error bars 
indicate one standard deviation. 
 
Figure 2. GO Correlation Range Analysis.  
At higher Pearson correlations (in particular, r > 0.8) gene pairs are more likely to 
have similar GO biological processes, although very few gene pairs have high 
correlations in SAGE and cDNA datasets. 75% of gene pairs with correlation > 0.9 
calculated from Affymetrix data have the same GO annotation.  Interestingly, gene 
pairs with very low Pearson values are less likely to share a common GO term than 
randomly permuted data.  Random lines represent mean values from 1000 random 
permutations.  Error bars indicate one standard deviation. 
 
Figure 3. GO Correlation Range Analysis for Multi-Platform Average 
Comparison of two-platform average Pearson to individual platform indicates that 
gene pairs identified as coexpressed in multiple platforms (higher average Pearson) 
are much more likely to be confirmed by GO.  Random line represents mean values 
from 1000 random permutations of all two-platform combinations.  Error bars 
indicate one standard deviation. 
 
Figure 4. Comparison of 2-Platform Combination Method to Other Recent 
Coexpression Methods.  (A-C) For each method, gene pairs with higher scores are 
more likely to share a common GO term.  Lines with hollow squares represent 
numbers of gene pairs (right axis).  Lines with solid triangles represent % of gene 
pairs with a common GO term.  Random lines represent mean values from 1000 
random permutations.  Error bars indicate one standard deviation. (D) Venn 
diagram indicates overlap between the 2,500 top scoring pairs for each method (not 
required to be in GO).  Each method is comprised of different datasets and has 
different genes.  Therefore a direct comparison of method performance is difficult.  
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Instead, the graphs illustrate that each method is capable of identifying biologically 
relevant gene pair relationships and the Venn diagram indicates that they identify 
very different sets of relationships.  Furthermore, the GO analysis provides a means 
of choosing reasonable score-thresholds for each method to generate lists of high-
confidence coexpressed genes. 



Platform Division MCE cutoff Gene pairs rc value 
Random 100 4,149,092 0.925 

95 3,427,174 0.257 
Affymetrix 

Pseudo-random 
by GSE series 100 3,260,557 0.253 
Random 100 10,429,219 0.889 

28 11,178,346 0.253 
cDNA 
Microarray Pseudo-random 

by author 100 9,747,169 0.273 
Random 100 2,635 0.776 

23 577,820 0.253 
SAGE 

Pseudo-random 
by tissue 100 1,518 0.660 

 

Table 1
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Supplementary Materials 
This file and additional supplementary data can be found at: 
http://www.bcgsc.ca/gc/bomge/coexpression/suppl_materials 
 
Supplementary Results 
Cancer sample analysis 

Cancer samples were found to represent a substantial fraction in the cDNA 
(~29%), Affymetrix (~40% of the complete 889 samples) and SAGE (~61%) datasets.  
Cancer tissues are often characterized by changes in gene expression and thus could act 
as a confounding factor when trying to identify co-expressed genes.  To investigate this 
issue the SAGE dataset was divided into cancer and normal subsets and consistency 
between these measured.  The comparison of normal and cancer SAGE libraries resulted 
in a correlation of 0.324 for an MCE of 23 and 0.707 for an MCE of 80 (MCE of 100 
could not be used because the normal tissue subset only contained 94 samples).  These 
results are comparable to that seen for consistencies of SAGE when not taking cancer 
status into account (Suppl. Fig. 3).  Thus, we cautiously concluded that the presence of 
cancer libraries was not seriously affecting the SAGE co-expression analysis and 
proceeded to subsequent analyses without removing the cancer libraries. 
 
Ranked Match Analysis 

The ranked match analysis shows that different expression platforms can identify 
the same co-expressed genes (Suppl. Fig. 5).  It may be that for gene A, SAGE 
experiments identify its most similar gene (in terms of expression patterns) to be gene B 
with a Pearson correlation of 0.9.  The cDNA microarray data might also identify gene B 
as the closest gene to A but with a Pearson value of 0.78.  Thus, a comparison of Pearson 
ranks may be a more useful method for evaluating cross platform consistency than actual 
Pearson values.  The Affymetrix/cDNA comparison found that 26.5% of genes have a co-
expressed gene of Pearson rank 10 or better confirmed by both platforms compared to 
18.9% for random data.  Affymetrix versus SAGE agreed for 26.4% of genes compared 
to 18.9% for random, and cDNA versus SAGE for 21.8% compared to 18.8% for 
random.  The high percentages of genes in agreement for random data are the result of 
our MCE criteria.  Each gene pair must have at least 95, 28 or 23 MCE (for Affymetrix, 
cDNA and SAGE respectively).  Some genes will have close to this number of 
experiments and thus realize the required MCE for only a few gene pair comparisons.  
Since we only consider gene pairs that are common in all three datasets, there will be 
some genes that only have a little more than 10 gene pairs.  In these cases, a shared match 
within a rank of 10 for the two platforms will occur quite commonly by chance.  Thus, it 
is the difference over random, rather than the actual percentage, that indicates a 
significant number of shared matches.  In all three comparisons, the percentage of shared 
matches observed was significantly greater than that observed between randomized 
datasets (p<0.001, 1000 randomizations).  We can conclude that the platform 
comparisons do identify more of the same co-expressed genes than expected by chance.  
However, in general the platforms show poor agreement. 
 
Supplementary Methods 
Cancer Sample Analysis 

Supplemental Information



The proportion of cancer samples was determined from the literature for the 
cDNA dataset [6] and from GEO sample records for Affymetrix and SAGE.  SAGE, 
having the highest percentage of cancer samples, was used for the analysis.  The SAGE 
data set was manually divided into 94 normal and 148 cancer libraries based on sample 
descriptions from the GEO sample records.  The consistency between these two subsets 
of the data was calculated as described above and compared to the other data sets. 
 
Ranked Match Analysis 

In addition to considering the actual Pearson correlation between each gene pair 
and comparing between platforms, the correlation rank was considered.  This analysis 
identifies shared co-expressed genes, or matches, between platforms.  For instance, a 
shared match would be illustrated by the following:  Gene A’s 2nd most similar gene is 
gene B in the Affymetrix data.  This is gene A’s 3rd most similar gene in the SAGE data.  
This example would count as one shared ‘match’ for a neighborhood of k = 3 for the 
Affymetrix versus SAGE comparison.  A Perl script was written to determine each gene’s 
closest k neighbors from one dataset and compare to another dataset.  Numbers of shared 
neighbors within each neighborhood size (k) were tallied and graphed.  1000 
randomizations were conducted for each platform comparison to determine how often the 
level of agreement at each neighborhood would be observed by chance. 
 



Supplementary Figures 
Suppl. Figure 1.  Venn Diagram outlining datasets used in analysis. 
N indicates the number of experiments available for the platform.  For Affymetrix, 
the number in brackets indicates the subset of experiments providing detection 
(PMA) calls. The number of genes represents only those genes that could be 
unambiguously mapped to a LocusLink ID. 

 
 



Suppl. Figure 2. Internal consistency analysis based on random division of 
experiments. 
Analysis is identical to Figure 1, except division of libraries is random rather than 
by experiment, author, or tissue, resulting in much higher rc values due to presence 
of replicates or very similar experiments.  Data represent mean rc value and gene 
pair number of 100 random divisions.  Error bars indicate one standard deviation. 

 



Suppl. Figure 3. SAGE cancer versus normal analysis. 
Plots represent correlation of correlations for subsets of SAGE data.  (A) 
Correlation between normal and cancer SAGE libraries, rc=0.324 for 23 MCE;  (B) 
Correlation between randomly divided subsets of SAGE data, rc=0.267 for MCE of 
23. 



Suppl. Figure 4.  Platform Comparisons. 
Plots represent correlation of correlations (rc) between each pairwise platform 
comparison.  A. Affymetrix versus cDNA, rc=0.102;  B. Affymetrix versus SAGE, 
rc=0.086;  C. cDNA versus SAGE, rc=0.041.  1,173,330 gene pairs are shown 
representing the intersection between Affymetrix, cDNA, and SAGE for which 95, 
28, and 23 MCE were required respectively for each Pearson correlation 
calculation.  Correlations observed in A-C were significant when compared to 
randomized data (p<0.001, 1000 randomizations).  Small inset boxes show 
representative randomized data; D-E. Pearson correlation (r) frequency 
distributions for each platform.  Notice that each displays a similar, approximately 
normal distribution with a slight skew towards positive correlations. 

 



 Suppl. Figure 5. Ranked Pearson Analysis.   
Percentage of genes with a co-expressed gene identified by both platforms within a 
rank or neighborhood of k for each platform comparison.  Random lines represent 
mean values from 1000 randomizations.  Error bars indicate one standard 
deviation. 



Suppl. Figure 6.  Effect of correlation cutoff on rc. 
Platform comparisons (Suppl. Fig. 4) were repeated with subsets of gene pairs with 
correlations above cutoffs (0.1 increments).  Only positive correlations were 
considered.  Higher global concordance was observed for the Affymetrix/cDNA 
comparison at a Pearson cutoff (r-cutoff) of 0.65 and for the Affymetrix/SAGE 
comparison at r-cutoff of 0.6 and 0.7 (p<0.05).  The cDNA/SAGE comparison did 
not show any increase that was significant.  In any case, the steady trend of 
increasing rc with more stringent r-cutoff was not observed as reported elsewhere 
(Lee et al., 2003).   Asterisks indicate increased rc values which were also found to be 
significant (p<0.05). 

 



Suppl. Figure 7. GO Analysis.  
Gene pairs for which both genes were annotated with Gene Ontology Biological 
Process terms were evaluated to determine the percentage of pairs within a 
neighborhood of k that are annotated with the same GO term.  As the GO 
annotation is hierarchical, only the most specific GO terms for each gene were 
considered. Comparison of these percentages to results produced from randomizing 
gene pair correlations indicate that gene pairs found to be correlated by any 
platform are more likely to share the same function than randomly chosen gene 
pairs (p<0.001, 1000 randomizations).  Affymetrix appears to predict the most 
biologically relevant gene pair correlations. 

 



Suppl. Figure 8.  Expanded Go Analysis including hierarchical relationships. 
Analysis performed as for Suppl. Figure 7, but in addition to considering only most 
specific GO term annotations (A), the percentage of gene pairs sharing parent terms 
(B) or parent and grandparent terms (C) were also determined. As higher levels in 
the GO hierarchical tree (parent and grandparent terms) are considered, there is a 
higher chance that randomly chosen gene pairs will share GO terms, resulting in 
less difference between random and actual data. 
 

 



Suppl.  Figure 9.  GO categories for gene pairs confirmed by multiple datasets.  The 
chart shows GO terms of gene pairs with an average Pearson correlation of r>0.6 
for any two of three platform datasets (Affymetrix, cDNA microarray, SAGE).  The 
legend only shows the 32 categories with more than one gene pair.  However, 
another 20 categories are represented on the chart and are summarized in Suppl. 
Table 1. 



Suppl. Table 1. 
Gene Pairs  Percent Common Term Go Term 
257 55.508 GO:0006412 protein biosynthesis 
25 5.3996 GO:0006355 regulation of transcription, DNA-dependent 
18 3.8877 GO:0007067 mitosis 
15 3.2397 GO:0006260 DNA replication 
14 3.0238 GO:0006281 DNA repair 
13 2.8078 GO:0006468 protein amino acid phosphorylation 
11 2.3758 GO:0006958 complement activation, classical pathway 
10 2.1598 GO:0008152 metabolism 
8 1.7279 GO:0007049 cell cycle 
7 1.5119 GO:0000910 cytokinesis 
6 1.2959 GO:0006810 transport 
6 1.2959 GO:0007165 signal transduction 
5 1.0799 GO:0000074 regulation of cell cycle 
5 1.0799 GO:0006118 electron transport 
4 0.8639 GO:0008283 cell proliferation 
4 0.8639 GO:0006955 immune response 
3 0.6479 GO:0006414 translational elongation 
3 0.6479 GO:0000398 nuclear mRNA splicing, via spliceosome 
3 0.6479 GO:0006357 regulation of transcription from Pol II promoter 
3 0.6479 GO:0006936 muscle contraction 
2 0.432 GO:0007155 cell adhesion 
2 0.432 GO:0006508 proteolysis and peptidolysis 
2 0.432 GO:0006464 protein modification 
2 0.432 GO:0007517 muscle development 
2 0.432 GO:0007275 development 
2 0.432 GO:0006928 cell motility 
2 0.432 GO:0006511 ubiquitin-dependent protein catabolism 
2 0.432 GO:0006350 transcription 
2 0.432 GO:0008151 cell growth and/or maintenance 
2 0.432 GO:0007264 small GTPase mediated signal transduction 
2 0.432 GO:0006418 tRNA aminoacylation for protein translation 
2 0.432 GO:0006915 apoptosis 
1 0.216 GO:0015031 protein transport 
1 0.216 GO:0006461 protein complex assembly 
1 0.216 GO:0008380 RNA splicing 
1 0.216 GO:0006364 rRNA processing 
1 0.216 GO:0006366 transcription from Pol II promoter 
1 0.216 GO:0007242 intracellular signaling cascade 
1 0.216 GO:0006091 energy pathways 
1 0.216 GO:0006635 fatty acid beta-oxidation 
1 0.216 GO:0006177 GMP biosynthesis 
1 0.216 GO:0006096 glycolysis 
1 0.216 GO:0006259 DNA metabolism 
1 0.216 GO:0007186 G-protein coupled receptor protein signaling pathway 
1 0.216 GO:0007267 cell-cell signaling 
1 0.216 GO:0006098 pentose-phosphate shunt 
1 0.216 GO:0006917 induction of apoptosis 
1 0.216 GO:0016575 histone deacetylation 
1 0.216 GO:0006954 inflammatory response 
1 0.216 GO:0045786 negative regulation of cell cycle 
1 0.216 GO:0009966 regulation of signal transduction 
463 100 52  

 
 


