// Boost CRC library crc.hpp header file -----------------------------------// // Copyright 2001, 2004, 2011 Daryle Walker. // Distributed under the Boost Software License, Version 1.0. (See the // accompanying file LICENSE_1_0.txt or a copy at // .) // See for the library's home page. /** \file \brief A collection of function templates and class templates that compute various forms of Cyclic Redundancy Codes (CRCs). \author Daryle Walker \version 1.5 \copyright Boost Software License, version 1.0 Contains the declarations (and definitions) of various kinds of CRC computation functions, function object types, and encapsulated policy types. \warning The sample CRC-computer types were just checked against the Catalogue of parametrised CRC algorithms. New type aliases were added where I got a standard wrong. However, the mistaken typedefs are still there for backwards compatibility. \note There are references to the Rocksoft™ Model CRC Algorithm, as described within \"A Painless Guide to CRC Error Detection Algorithms,\" linked from \"CRC: A Paper On CRCs\" by Ross Williams. It will be abbreviated \"RMCA\" in other documentation blocks. */ #ifndef BOOST_CRC_HPP #define BOOST_CRC_HPP #include // for boost::array #include // for BOOST_STATIC_CONSTANT, etc. #include // for UINTMAX_C, boost::uintmax_t #include // for boost::uint_t #include #include #include #include // for CHAR_BIT, etc. #include // for std::size_t #include // for std::numeric_limits #if defined(BOOST_NO_CXX11_HDR_ARRAY) || \ defined(BOOST_NO_CXX11_NOEXCEPT) // BOOST_NO_CXX11_HDR_TYPE_TRAITS is set for GCC 4.8 BOOST_PRAGMA_MESSAGE("C++03 support is deprecated in Boost.CRC 1.84 and will be removed in Boost.CRC 1.86.") #endif // The type of CRC parameters that can go in a template should be related // on the CRC's bit count. This macro expresses that type in a compact // form, but also allows an alternate type for compilers that don't support // dependent types (in template value-parameters). #if !(defined(BOOST_NO_DEPENDENT_TYPES_IN_TEMPLATE_VALUE_PARAMETERS)) #define BOOST_CRC_PARM_TYPE typename ::boost::uint_t::fast #else #define BOOST_CRC_PARM_TYPE unsigned long #endif namespace boost { // Forward declarations ----------------------------------------------------// //! Bit-wise CRC computer template < std::size_t Bits > class crc_basic; //! Table-driven CRC computer, usable as a function object template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly = 0u, BOOST_CRC_PARM_TYPE InitRem = 0u, BOOST_CRC_PARM_TYPE FinalXor = 0u, bool ReflectIn = false, bool ReflectRem = false > class crc_optimal; //! Compute the (unaugmented) CRC of a memory block template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly, BOOST_CRC_PARM_TYPE InitRem, BOOST_CRC_PARM_TYPE FinalXor, bool ReflectIn, bool ReflectRem > typename uint_t::fast crc( void const *buffer, std::size_t byte_count); //! Compute the CRC of a memory block, with any augmentation provided by user template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly > typename uint_t::fast augmented_crc( void const *buffer, std::size_t byte_count, typename uint_t::fast initial_remainder = 0u); //! Computation type for ARC|CRC-16|CRC-IBM|CRC-16/ARC|CRC-16/LHA standard typedef crc_optimal<16, 0x8005, 0, 0, true, true> crc_16_type; //! Computation type for CRC-16/CCITT-FALSE standard typedef crc_optimal<16, 0x1021, 0xFFFF, 0, false, false> crc_ccitt_false_t; //! Computation type for the CRC mistakenly called the CCITT standard typedef crc_ccitt_false_t crc_ccitt_type; //! Computation type for the actual //! KERMIT|CRC-16/CCITT|CRC-16/CCITT-TRUE|CRC-CCITT standard typedef crc_optimal<16, 0x1021, 0, 0, true, true> crc_ccitt_true_t; //! Computation type that I mistakenly called the XMODEM standard; it inverts //! both reflection parameters and reflects the truncated divisor (Don't use?!) typedef crc_optimal<16, 0x8408, 0, 0, true, true> crc_xmodem_type; //! Computation type for the actual XMODEM|ZMODEM|CRC-16/ACORN standard typedef crc_optimal<16, 0x1021, 0, 0, false, false> crc_xmodem_t; //! Computation type for CRC-32|CRC-32/ADCCP|PKZIP standard typedef crc_optimal<32, 0x04C11DB7, 0xFFFFFFFF, 0xFFFFFFFF, true, true> crc_32_type; // Forward declarations for implementation detail stuff --------------------// // (Just for the stuff that will be needed for the next two sections) //! \cond namespace detail { //! Mix-in class to add a possibly-reflecting member function template < int BitLength, bool DoIt, int Id = 0 > class possible_reflector; //! Mix-in class for byte-fed, table-driven CRC algorithms template < int Order, boost::uintmax_t TruncatedPolynomial, bool Reflect, int Id = 0 > class crc_driver; } // namespace detail //! \endcond // Simple cyclic redundancy code (CRC) class declaration -------------------// /** Objects of this type compute the CRC checksum of submitted data, where said data can be entered piecemeal through several different kinds of groupings. Modulo-2 polynomial division steps are always performed bit-wise, without the use of pre-computation tables. Said division uses the altered algorithm, so any data has to be unaugmented. \pre 0 \< \a Bits \<= \c std\::numeric_limits\\::digits \tparam Bits The order of the modulo-2 polynomial divisor. (\e Width from the RMCA) */ template < std::size_t Bits > class crc_basic { public: // Type /** \brief The register type used for computations This type is used for CRC calculations and is the type for any returned checksums and returned or submitted remainders, (truncated) divisors, or XOR masks. It is a built-in unsigned integer type. */ typedef typename boost::uint_t::fast value_type; // Constant for the template parameter //! A copy of \a Bits provided for meta-programming purposes BOOST_STATIC_CONSTANT( std::size_t, bit_count = Bits ); // Constructor (use the automatic copy-ctr, move-ctr, and dtr) //! Create a computer, separately listing each needed parameter explicit crc_basic( value_type truncated_polynomial, value_type initial_remainder = 0, value_type final_xor_value = 0, bool reflect_input = false, bool reflect_remainder = false ); // Internal Operations //! Return the (truncated) polynomial divisor value_type get_truncated_polynominal() const; //! Return what the polynomial remainder was set to during construction value_type get_initial_remainder() const; //! Return the XOR-mask used during output processing value_type get_final_xor_value() const; //! Check if input-bytes will be reflected before processing bool get_reflect_input() const; //! Check if the remainder will be reflected during output processing bool get_reflect_remainder() const; //! Return the remainder based from already-processed bits value_type get_interim_remainder() const; //! Change the interim remainder to a new value void reset( value_type new_rem ); //! Change the interim remainder back to the initial value void reset(); // External Operations //! Submit a single bit for input processing void process_bit( bool bit ); //! Submit the lowest \a bit_length bits of a byte for input processing void process_bits( unsigned char bits, std::size_t bit_length ); //! Submit a single byte for input processing void process_byte( unsigned char byte ); //! Submit a memory block for input processing, iterator-pair style void process_block( void const *bytes_begin, void const *bytes_end ); //! Submit a memory block for input processing, pointer-and-size style void process_bytes( void const *buffer, std::size_t byte_count ); //! Return the checksum of the already-processed bits value_type checksum() const; private: // Member data value_type rem_; value_type poly_, init_, final_; // non-const to allow assignability bool rft_in_, rft_out_; // non-const to allow assignability }; // boost::crc_basic // Optimized cyclic redundancy code (CRC) class declaration ----------------// /** Objects of this type compute the CRC checksum of submitted data, where said data can be entered piecemeal through several different kinds of groupings. Modulo-2 polynomial division steps are performed byte-wise, aided by the use of pre-computation tables. Said division uses the altered algorithm, so any data has to be unaugmented. \pre 0 \< \a Bits \<= \c std\::numeric_limits\\::digits \tparam Bits The order of the modulo-2 polynomial divisor. (\e Width from the RMCA) \tparam TruncPoly The lowest coefficients of the divisor polynomial. The highest-order coefficient is omitted and always assumed to be 1. Defaults to \c 0, i.e. the only non-zero term is the implicit one for xBits. (\e Poly from the RMCA) \tparam InitRem The (unaugmented) initial state of the polynomial remainder. Defaults to \c 0 if omitted. (\e Init from the RMCA) \tparam FinalXor The (XOR) bit-mask to be applied to the output remainder, after possible reflection but before returning. Defaults to \c 0 (i.e. no bit changes) if omitted. (\e XorOut from the RMCA) \tparam ReflectIn If \c true, input bytes are read lowest-order bit first, otherwise highest-order bit first. Defaults to \c false if omitted. (\e RefIn from the RMCA) \tparam ReflectRem If \c true, the output remainder is reflected before the XOR-mask. Defaults to \c false if omitted. (\e RefOut from the RMCA) \todo Get rid of the default value for \a TruncPoly. Choosing a divisor is an important decision with many factors, so a default is never useful, especially a bad one. */ template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly, BOOST_CRC_PARM_TYPE InitRem, BOOST_CRC_PARM_TYPE FinalXor, bool ReflectIn, bool ReflectRem > class crc_optimal { public: // Type //! \copydoc boost::crc_basic::value_type typedef typename boost::uint_t::fast value_type; // Constants for the template parameters //! \copydoc boost::crc_basic::bit_count BOOST_STATIC_CONSTANT( std::size_t, bit_count = Bits ); //! A copy of \a TruncPoly provided for meta-programming purposes BOOST_STATIC_CONSTANT( value_type, truncated_polynominal = TruncPoly ); //! A copy of \a InitRem provided for meta-programming purposes BOOST_STATIC_CONSTANT( value_type, initial_remainder = InitRem ); //! A copy of \a FinalXor provided for meta-programming purposes BOOST_STATIC_CONSTANT( value_type, final_xor_value = FinalXor ); //! A copy of \a ReflectIn provided for meta-programming purposes BOOST_STATIC_CONSTANT( bool, reflect_input = ReflectIn ); //! A copy of \a ReflectRem provided for meta-programming purposes BOOST_STATIC_CONSTANT( bool, reflect_remainder = ReflectRem ); // Constructor (use the automatic copy-ctr, move-ctr, and dtr) //! Create a computer, giving an initial remainder if desired explicit crc_optimal( value_type init_rem = initial_remainder ); // Internal Operations //! \copybrief boost::crc_basic::get_truncated_polynominal value_type get_truncated_polynominal() const; //! \copybrief boost::crc_basic::get_initial_remainder value_type get_initial_remainder() const; //! \copybrief boost::crc_basic::get_final_xor_value value_type get_final_xor_value() const; //! \copybrief boost::crc_basic::get_reflect_input bool get_reflect_input() const; //! \copybrief boost::crc_basic::get_reflect_remainder bool get_reflect_remainder() const; //! \copybrief boost::crc_basic::get_interim_remainder value_type get_interim_remainder() const; //! Change the interim remainder to either a given value or the initial one void reset( value_type new_rem = initial_remainder ); // External Operations //! \copybrief boost::crc_basic::process_byte void process_byte( unsigned char byte ); //! \copybrief boost::crc_basic::process_block void process_block( void const *bytes_begin, void const *bytes_end ); //! \copybrief boost::crc_basic::process_bytes void process_bytes( void const *buffer, std::size_t byte_count ); //! \copybrief boost::crc_basic::checksum value_type checksum() const; // Operators //! Submit a single byte for input processing, suitable for the STL void operator ()( unsigned char byte ); //! Return the checksum of the already-processed bits, suitable for the STL value_type operator ()() const; private: // Implementation types // (Processing for reflected input gives reflected remainders, so you only // have to apply output-reflection if Reflect-Remainder doesn't match // Reflect-Input.) typedef detail::possible_reflector reflect_i_type; typedef detail::crc_driver crc_table_type; typedef detail::possible_reflector reflect_o_type; // Member data value_type rem_; }; // boost::crc_optimal // Implementation detail stuff ---------------------------------------------// //! \cond namespace detail { /** \brief Meta-programming integral constant for a single-bit bit-mask Generates a compile-time constant for a bit-mask that affects a single bit. The \c value will be 2BitIndex. The \c type will be the smallest built-in unsigned integer type that can contain the value, unless there's a built-in type that the system can handle easier, then the \c type will be smallest fast-handled unsigned integer type. \pre 0 \<= BitIndex \< \c std\::numeric_limits\\::digits \tparam BitIndex The place of the sole set bit. */ template < int BitIndex > struct high_bit_mask_c : boost::integral_constant::fast, ( UINTMAX_C(1) << BitIndex )> {}; /** \brief Meta-programming integral constant for a lowest-bits bit-mask Generates a compile-time constant for a bit-mask that affects the lowest bits. The \c value will be 2BitCount - 1. The \c type will be the smallest built-in unsigned integer type that can contain the value, unless there's a built-in type that the system can handle easier, then the \c type will be smallest fast-handled unsigned integer type. \pre 0 \<= BitCount \<= \c std\::numeric_limits\\::digits \tparam BitCount The number of lowest-placed bits set. */ template < int BitCount > struct low_bits_mask_c : boost::integral_constant::fast, ( BitCount ? (( (( UINTMAX_C(1) << (BitCount - 1) ) - 1u) << 1 ) | UINTMAX_C( 1 )) : 0u )> {}; /** \brief Reflects the bits of a number Reverses the order of the given number of bits within a value. For instance, if the given reflect count is 5, then the bit values for the 16- and 1-place will switch and the 8- and 2-place will switch, leaving the other bits alone. (The 4-place bit is in the middle, so it wouldn't change.) \pre \a Unsigned is a built-in unsigned integer type \pre 0 \< word_length \<= \c std\::numeric_limits\\::digits \tparam Unsigned The type of \a x. \param x The value to be (partially) reflected. \param word_length The number of low-order bits to reflect. Defaults to the total number of value bits in \a Unsigned. \return The (partially) reflected value. \todo Check if this is the fastest way. */ template < typename Unsigned > Unsigned reflect_unsigned( Unsigned x, int word_length = std::numeric_limits::digits ) { for ( Unsigned l = 1u, h = static_cast(l << (word_length - 1)) ; h > l ; h >>= 1, l <<= 1 ) { Unsigned const m = h | l, t = x & m; if ( (t == h) || (t == l) ) x ^= m; } return x; } /** \brief Make a byte-to-byte-reflection map Creates a mapping array so the results can be cached. Uses #reflect_unsigned to generate the element values. \return An array a such that, for a given byte value i, a[ i ] resolves to the reflected value of i. */ boost::array< unsigned char, (UINTMAX_C( 1 ) << CHAR_BIT) > inline make_byte_reflection_table() { boost::array result; unsigned char i = 0u; do result[ i ] = reflect_unsigned( i ); while ( ++i ); return result; } /** \brief Reflects the bits of a single byte Reverses the order of all the bits within a value. For instance, the bit values for the 2CHAR_BIT - 1- and 1-place will switch and the 2CHAR_BIT - 2- and 2-place will switch, etc. \param x The byte value to be reflected. \return The reflected value. \note Since this could be the most common type of reflection, and the number of states is relatively small, the implementation pre-computes and uses a table of all the results. */ inline unsigned char reflect_byte( unsigned char x ) { static boost::array const table = make_byte_reflection_table(); return table[ x ]; } /** \brief Reflects some bits within a single byte Like #reflect_unsigned, except it takes advantage of any (long-term) speed gains #reflect_byte may bring. \pre 0 \< \a word_length \<= \c CHAR_BIT \param x The value to be (partially) reflected. \param word_length The number of low-order bits to reflect. \return The (partially) reflected value. */ inline unsigned char reflect_sub_byte( unsigned char x, int word_length ) { return reflect_byte(x) >> (CHAR_BIT - word_length); } /** \brief Possibly reflects the bits of a number Reverses the order of the given number of bits within a value. For instance, if the given reflect count is 5, then the bit values for the 16- and 1-place will switch and the 8- and 2-place will switch, leaving the other bits alone. (The 4-place bit is in the middle, so it wouldn't change.) This variant function allows the reflection be controlled by an extra parameter, in case the decision to use reflection is made at run-time. \pre \a Unsigned is a built-in unsigned integer type \pre 0 \< word_length \<= \c std\::numeric_limits\\::digits \tparam Unsigned The type of \a x. \param x The value to be (partially) reflected. \param reflect Controls whether \a x is actually reflected (\c true) or left alone (\c false). \param word_length The number of low-order bits to reflect. Defaults to the total number of value bits in \a Unsigned. \return The possibly (partially) reflected value. */ template < typename Unsigned > inline Unsigned reflect_optionally( Unsigned x, bool reflect, int word_length = std::numeric_limits::digits ) { return reflect ? reflect_unsigned(x, word_length) : x; } /** \brief Possibly reflects the bits of a single byte Uses #reflect_byte (if \a reflect is \c true). \param x The byte value to be (possibly) reflected. \param reflect Whether (\c true) or not (\c false) \a x is reflected. \return reflect ? reflect_byte(x) : x */ inline unsigned char reflect_byte_optionally( unsigned char x, bool reflect ) { return reflect ? reflect_byte(x) : x; } /** \brief Update a CRC remainder by several bits, assuming a non-augmented message Performs several steps of division required by the CRC algorithm, giving a new remainder polynomial based on the divisor polynomial and the synthesized dividend polynomial (from the old remainder and the newly-provided input). The computations assume that the CRC is directly exposed from the remainder, without any zero-valued bits augmented to the message bits. \pre \a Register and \a Word are both built-in unsigned integer types \pre 0 \< \a register_length \<= std\::numeric_limits\<\a Register\> \::digits \pre 0 \< \a word_length \<= std\::numeric_limits\<\a Word\>\::digits \tparam Register The type used for representing the remainder and divisor modulo-2 polynomials. The bit at 2i is used as the coefficient of xi. \tparam Word The type used for storing the incoming terms of the dividend modulo-2 polynomial. The bit at 2i is used as the coefficient of xi when \a reflect is \c false, and the coefficient of xword_length - 1 - i otherwise. \param[in] register_length The number of significant low-order bits to be used from \a Register values. It is the order of the modulo-2 polynomial remainder and one less than the divisor's order. \param[in,out] remainder The upper part of the dividend polynomial before division, and the remainder polynomial after. \param[in] new_dividend_bits The coefficients for the next \a word_length lowest terms of the dividend polynomial. \param[in] truncated_divisor The lowest coefficients of the divisor polynomial. The highest-order coefficient is omitted and always assumed to be 1. \param[in] word_length The number of lowest-order bits to read from \a new_dividend_bits. \param[in] reflect If \c false, read from the highest-order marked bit from \a new_dividend_bits and go down, as normal. Otherwise, proceed from the lowest-order bit and go up. \note This routine performs a modulo-2 polynomial division variant. The exclusive-or operations are applied in a different order, since that kind of operation is commutative and associative. It also assumes that the zero-valued augment string was applied before this step, which means that the updated remainder can be directly used as the final CRC. */ template < typename Register, typename Word > void crc_modulo_word_update( int register_length, Register &remainder, Word new_dividend_bits, Register truncated_divisor, int word_length, bool reflect ) { // Create this masking constant outside the loop. Register const high_bit_mask = UINTMAX_C(1) << (register_length - 1); // The natural reading order for division is highest digit/bit first. // The "reflect" parameter switches this. However, building a bit mask // for the lowest bit is the easiest.... new_dividend_bits = reflect_optionally( new_dividend_bits, !reflect, word_length ); // Perform modulo-2 division for each new dividend input bit for ( int i = word_length ; i ; --i, new_dividend_bits >>= 1 ) { // compare the new bit with the remainder's highest remainder ^= ( new_dividend_bits & 1u ) ? high_bit_mask : 0u; // perform modulo-2 division bool const quotient = (remainder & high_bit_mask) != 0; remainder <<= 1; remainder ^= quotient ? truncated_divisor : 0u; // The quotient isn't used for anything, so don't keep it. } // Clear overflowed bits remainder &= std::numeric_limits::max() >> (std::numeric_limits::digits - register_length); } /** \brief Update a CRC remainder by a single bit, assuming a non-augmented message Performs the next step of division required by the CRC algorithm, giving a new remainder polynomial based on the divisor polynomial and the synthesized dividend polynomial (from the old remainder and the newly-provided input). The computations assume that the CRC is directly exposed from the remainder, without any zero-valued bits augmented to the message bits. \pre \a Register is a built-in unsigned integer type \pre 0 \< \a register_length \<= std\::numeric_limits\<\a Register\> \::digits \tparam Register The type used for representing the remainder and divisor modulo-2 polynomials. The bit at 2i is used as the coefficient of xi. \param[in] register_length The number of significant low-order bits to be used from \a Register values. It is the order of the modulo-2 polynomial remainder and one less than the divisor's order. \param[in,out] remainder The upper part of the dividend polynomial before division, and the remainder polynomial after. \param[in] new_dividend_bit The coefficient for the constant term of the dividend polynomial. \param[in] truncated_divisor The lowest coefficients of the divisor polynomial. The highest-order coefficient is omitted and always assumed to be 1. \note This routine performs a modulo-2 polynomial division variant. The exclusive-or operations are applied in a different order, since that kind of operation is commutative and associative. It also assumes that the zero-valued augment string was applied before this step, which means that the updated remainder can be directly used as the final CRC. */ template < typename Register > inline void crc_modulo_update( int register_length, Register &remainder, bool new_dividend_bit, Register truncated_divisor ) { crc_modulo_word_update( register_length, remainder, static_cast(new_dividend_bit), truncated_divisor, 1, false ); } /** \brief Update a CRC remainder by several bits, assuming an augmented message Performs several steps of division required by the CRC algorithm, giving a new remainder polynomial based on the divisor polynomial and the synthesized dividend polynomial (from the old remainder and the newly-provided input). The computations assume that a zero-valued string of bits will be appended to the message before extracting the CRC. \pre \a Register and \a Word are both built-in unsigned integer types \pre 0 \< \a register_length \<= std\::numeric_limits\<\a Register\> \::digits \pre 0 \< \a word_length \<= std\::numeric_limits\<\a Word\>\::digits \tparam Register The type used for representing the remainder and divisor modulo-2 polynomials. The bit at 2i is used as the coefficient of xi. \tparam Word The type used for storing the incoming terms of the dividend modulo-2 polynomial. The bit at 2i is used as the coefficient of xi when \a reflect is \c false, and the coefficient of xword_length - 1 - i otherwise. \param[in] register_length The number of significant low-order bits to be used from \a Register values. It is the order of the modulo-2 polynomial remainder and one less than the divisor's order. \param[in,out] remainder The upper part of the dividend polynomial before division, and the remainder polynomial after. \param[in] new_dividend_bits The coefficients for the next \a word_length lowest terms of the dividend polynomial. \param[in] truncated_divisor The lowest coefficients of the divisor polynomial. The highest-order coefficient is omitted and always assumed to be 1. \param[in] word_length The number of lowest-order bits to read from \a new_dividend_bits. \param[in] reflect If \c false, read from the highest-order marked bit from \a new_dividend_bits and go down, as normal. Otherwise, proceed from the lowest-order bit and go up. \note This routine performs straight-forward modulo-2 polynomial division. It assumes that an augment string will be processed at the end of the message bits before doing CRC analysis. \todo Use this function somewhere so I can test it. */ template < typename Register, typename Word > void augmented_crc_modulo_word_update( int register_length, Register &remainder, Word new_dividend_bits, Register truncated_divisor, int word_length, bool reflect ) { // Create this masking constant outside the loop. Register const high_bit_mask = UINTMAX_C(1) << (register_length - 1); // The natural reading order for division is highest digit/bit first. // The "reflect" parameter switches this. However, building a bit mask // for the lowest bit is the easiest.... new_dividend_bits = reflect_optionally( new_dividend_bits, !reflect, word_length ); // Perform modulo-2 division for each new dividend input bit for ( int i = word_length ; i ; --i, new_dividend_bits >>= 1 ) { bool const quotient = (remainder & high_bit_mask) != 0; remainder <<= 1; remainder |= new_dividend_bits & 1u; remainder ^= quotient ? truncated_divisor : 0u; // The quotient isn't used for anything, so don't keep it. } } /** \brief Update a CRC remainder by a single bit, assuming an augmented message Performs the next step of division required by the CRC algorithm, giving a new remainder polynomial based on the divisor polynomial and the synthesized dividend polynomial (from the old remainder and the newly-provided input). The computations assume that a zero-valued string of bits will be appended to the message before extracting the CRC. \pre \a Register is a built-in unsigned integer type \pre 0 \< \a register_length \<= std\::numeric_limits\<\a Register\> \::digits \tparam Register The type used for representing the remainder and divisor modulo-2 polynomials. The bit at 2i is used as the coefficient of xi. \param[in] register_length The number of significant low-order bits to be used from \a Register values. It is the order of the modulo-2 polynomial remainder and one less than the divisor's order. \param[in,out] remainder The upper part of the dividend polynomial before division, and the remainder polynomial after. \param[in] new_dividend_bit The coefficient for the constant term of the dividend polynomial. \param[in] truncated_divisor The lowest coefficients of the divisor polynomial. The highest-order coefficient is omitted and always assumed to be 1. \note This routine performs straight-forward modulo-2 polynomial division. It assumes that an augment string will be processed at the end of the message bits before doing CRC analysis. \todo Use this function somewhere so I can test it. */ template < typename Register > inline void augmented_crc_modulo_update( int register_length, Register &remainder, bool new_dividend_bit, Register truncated_divisor ) { augmented_crc_modulo_word_update( register_length, remainder, static_cast(new_dividend_bit), truncated_divisor, 1, false ); } /** \brief A mix-in class that returns its argument This class template makes a function object that returns its argument as-is. It's one case for #possible_reflector. \pre 0 \< \a BitLength \<= \c std\::numeric_limits\ \::digits \tparam BitLength How many significant bits arguments have. */ template < int BitLength > class non_reflector { public: /** \brief The type to check for specialization This is a Boost integral constant indicating that this class does not reflect its input values. */ typedef boost::false_type is_reflecting_type; /** \brief The type to check for register bit length This is a Boost integral constant indicating how many significant bits won't actually be reflected. */ typedef boost::integral_constant< int, BitLength > width_c; /** \brief The type of (not-)reflected values This type is the input and output type for the (possible-) reflection function, which does nothing here. */ typedef typename boost::uint_t< BitLength >::fast value_type; /** \brief Does nothing Returns the given value, not reflecting any part of it. \param x The value to not be reflected. \return \a x */ inline static value_type reflect_q( value_type x ) { return x; } }; /** \brief A mix-in class that reflects (the lower part of) its argument, generally for types larger than a byte This class template makes a function object that returns its argument after reflecting its lower-order bits. It's one sub-case for #possible_reflector. \pre \c CHAR_BIT \< \a BitLength \<= \c std\::numeric_limits\\::digits \tparam BitLength How many significant bits arguments have. */ template < int BitLength > class super_byte_reflector { public: /** \brief The type to check for specialization This is a Boost integral constant indicating that this class does reflect its input values. */ typedef boost::true_type is_reflecting_type; /** \brief The type to check for register bit length This is a Boost integral constant indicating how many significant bits will be reflected. */ typedef boost::integral_constant< int, BitLength > width_c; /** \brief The type of reflected values This is both the input and output type for the reflection function. */ typedef typename boost::uint_t< BitLength >::fast value_type; /** \brief Reflect (part of) the given value Reverses the order of the given number of bits within a value, using #reflect_unsigned. \param x The value to be (partially) reflected. \return ( x & ~(2width_c\::value - 1) ) | REFLECT( x & (2width_c\::value - 1) ) */ inline static value_type reflect_q( value_type x ) { return reflect_unsigned(x, width_c::value); } }; /** \brief A mix-in class that reflects (the lower part of) its argument, generally for bytes This class template makes a function object that returns its argument after reflecting its lower-order bits. It's one sub-case for #possible_reflector. \pre 0 \< \a BitLength \<= \c CHAR_BIT \tparam BitLength How many significant bits arguments have. */ template < int BitLength > class sub_type_reflector { public: /** \brief The type to check for specialization This is a Boost integral constant indicating that this class does reflect its input values. */ typedef boost::true_type is_reflecting_type; /** \brief The type to check for register bit length This is a Boost integral constant indicating how many significant bits will be reflected. */ typedef boost::integral_constant< int, BitLength > width_c; /** \brief The type of reflected values This is both the input and output type for the reflection function. */ typedef unsigned char value_type; /** \brief Reflect (part of) the given value Reverses the order of the given number of bits within a value, using #reflect_sub_byte. \param x The value to be (partially) reflected. \return ( x & ~(2width_c\::value - 1) ) | REFLECT( x & (2width_c\::value - 1) ) */ inline static value_type reflect_q( value_type x ) { return reflect_sub_byte(x, width_c::value); } }; /** \brief A mix-in class that reflects (the lower part of) its argument This class template makes a function object that returns its argument after reflecting its lower-order bits. It's one case for #possible_reflector. \pre 0 \< \a BitLength \<= \c std\::numeric_limits\ \::digits \tparam BitLength How many significant bits arguments have. */ template < int BitLength > class reflector : public boost::conditional< (BitLength > CHAR_BIT), super_byte_reflector, sub_type_reflector >::type { }; /** This class template adds a member function #reflect_q that will conditionally reflect its first argument, controlled by a compile-time parameter. \pre 0 \< \a BitLength \<= \c std\::numeric_limits\ \::digits \tparam BitLength How many significant bits arguments have. \tparam DoIt \c true if #reflect_q will reflect, \c false if it should return its argument unchanged. \tparam Id An extra differentiator if multiple copies of this class template are mixed-in as base classes. Defaults to 0 if omitted. */ template < int BitLength, bool DoIt, int Id > class possible_reflector : public boost::conditional< DoIt, reflector, non_reflector >::type { public: /** \brief The type to check for ID This is a Boost integral constant indicating what ID number this instantiation used. */ typedef boost::integral_constant id_type; }; /** \brief Find the composite remainder update effect from a fixed bit sequence, for each potential sequence combination. For each value between 0 and 2SubOrder - 1, computes the XOR mask corresponding to the composite effect they update the incoming remainder, which is the upper part of the dividend that gets (partially) pushed out of its register by the incoming value's bits. The composite value merges the \"partial products\" from each bit of the value being updated individually. \pre \a Register is a built-in unsigned integer type \pre 0 \< \a SubOrder \<= \a register_length \<= std\::numeric_limits\<\a Register\>\::digits \tparam SubOrder The number of low-order significant bits of the trial new dividends. \tparam Register The type used for representing the remainder and divisor modulo-2 polynomials. The bit at 2i is used as the coefficient of xi. \param[in] register_length The number of significant low-order bits to be used from \a Register values. It is the order of the modulo-2 polynomial remainder and one less than the divisor's order. \param[in] truncated_divisor The lowest coefficients of the divisor polynomial. The highest-order coefficient is omitted and always assumed to be 1. \param[in] reflect If \c false, read from the highest-order marked bit from a new dividend's bits and go down, as normal. Otherwise, proceed from the lowest-order bit and go up. \return An array such that the element at index i is the composite effect XOR mask for value i. \note This routine performs a modulo-2 polynomial division variant. The exclusive-or operations are applied in a different order, since that kind of operation is commutative and associative. It also assumes that the zero-valued augment string was applied before this step, which means that the updated remainder can be directly used as the final CRC. \todo Check that using the unaugmented-CRC division routines give the same composite mask table as using augmented-CRC routines. */ template < int SubOrder, typename Register > boost::array< Register, (UINTMAX_C( 1 ) << SubOrder) > make_partial_xor_products_table( int register_length, Register truncated_divisor, bool reflect ) { boost::array result = { 0 }; // Loop over every possible dividend value for ( typename boost::uint_t::fast dividend = 0u; dividend < result.size() ; ++dividend ) { Register remainder = 0u; crc_modulo_word_update( register_length, remainder, dividend, truncated_divisor, SubOrder, false ); result[ reflect_optionally(dividend, reflect, SubOrder) ] = reflect_optionally( remainder, reflect, register_length ); } return result; } /** \brief A mix-in class for the table of table-driven CRC algorithms Encapsulates the parameters need to make a global (technically, class-static) table usuable in CRC algorithms, and generates said table. \pre 0 \< \a SubOrder \<= Order \<= std\::numeric_limits\\::digits \tparam Order The order of the modulo-2 polynomial remainder and one less than the divisor's order. \tparam SubOrder The number of low-order significant bits of the trial new dividends. \tparam TruncatedPolynomial The lowest coefficients of the divisor polynomial. The highest-order coefficient is omitted and always assumed to be 1. \tparam Reflect If \c false, read from the highest-order marked bit from a new dividend's bits and go down, as normal. Otherwise, proceed from the lowest-order bit and go up. */ template < int Order, int SubOrder, boost::uintmax_t TruncatedPolynomial, bool Reflect > class crc_table_t { public: /** \brief The type to check for register bit length This is a Boost integral constant indicating how many significant bits are in the remainder and (truncated) divisor. */ typedef boost::integral_constant< int, Order > width_c; /** \brief The type to check for index-unit bit length This is a Boost integral constant indicating how many significant bits are in the trial new dividends. */ typedef boost::integral_constant< int, SubOrder > unit_width_c; /** \brief The type of registers This is the output type for the partial-product map. */ typedef typename boost::uint_t< Order >::fast value_type; /** \brief The type to check the divisor This is a Boost integral constant representing the (truncated) divisor. */ typedef boost::integral_constant< value_type, TruncatedPolynomial > poly_c; /** \brief The type to check for reflection This is a Boost integral constant representing whether input units should be read in reverse order. */ typedef boost::integral_constant< bool, Reflect > refin_c; /** \brief The type to check for map size This is a Boost integral constant representing the number of elements in the partial-product map, based on the unit size. */ typedef high_bit_mask_c< SubOrder > table_size_c; /** \brief The type of the unit TO partial-product map This is the array type that takes units as the index and said unit's composite partial-product mask as the element. */ typedef boost::array array_type; /** \brief Create a global array for the mapping table Creates an instance of a partial-product array with this class's parameters. \return A reference to a immutable array giving the partial-product update XOR map for each potential sub-unit value. */ static array_type const & get_table() { static array_type const table = make_partial_xor_products_table( width_c::value, poly_c::value, refin_c::value ); return table; } }; /** \brief A mix-in class that handles direct (i.e. non-reflected) byte-fed table-driven CRC algorithms This class template adds member functions #augmented_crc_update and #crc_update to update remainders from new input bytes. The bytes aren't reflected before processing. \pre \c CHAR_BIT \<= \a Order \<= \c std\::numeric_limits\ \::digits \tparam Order The order of the modulo-2 polynomial remainder and one less than the divisor's order. \tparam TruncatedPolynomial The lowest coefficients of the divisor polynomial. The highest-order coefficient is omitted and always assumed to be 1. */ template < int Order, boost::uintmax_t TruncatedPolynomial > class direct_byte_table_driven_crcs : public crc_table_t { typedef crc_table_t base_type; public: typedef typename base_type::value_type value_type; typedef typename base_type::array_type array_type; /** \brief Compute the updated remainder after reading some bytes The implementation reads from a table to speed-up applying augmented-CRC updates byte-wise. \param remainder The pre-update remainder \param new_dividend_bytes The address where the new bytes start \param new_dividend_byte_count The number of new bytes to read \return The updated remainder */ static value_type augmented_crc_update( value_type remainder, unsigned char const *new_dividend_bytes, std::size_t new_dividend_byte_count) { static array_type const & table = base_type::get_table(); while ( new_dividend_byte_count-- ) { // Locates the merged partial product based on the leading byte unsigned char const index = ( remainder >> (Order - CHAR_BIT) ) & UCHAR_MAX; // Complete the multi-bit modulo-2 polynomial division remainder <<= CHAR_BIT; remainder |= *new_dividend_bytes++; remainder ^= table.elems[ index ]; } return remainder; } /** \brief Compute the updated remainder after reading some bytes The implementation reads from a table to speed-up applying unaugmented-CRC updates byte-wise. \param remainder The pre-update remainder \param new_dividend_bytes The address where the new bytes start \param new_dividend_byte_count The number of new bytes to read \return The updated remainder */ static value_type crc_update( value_type remainder, unsigned char const *new_dividend_bytes, std::size_t new_dividend_byte_count) { static array_type const & table = base_type::get_table(); while ( new_dividend_byte_count-- ) { // Locates the merged partial product based on comparing the // leading and incoming bytes unsigned char const index = ( (remainder >> ( Order - CHAR_BIT )) & UCHAR_MAX ) ^ *new_dividend_bytes++; // Complete the multi-bit altered modulo-2 polynomial division remainder <<= CHAR_BIT; remainder ^= table.elems[ index ]; } return remainder; } }; /** \brief A mix-in class that handles reflected byte-fed, table-driven CRC algorithms This class template adds member functions #augmented_crc_update and #crc_update to update remainders from new input bytes. The bytes are reflected before processing. \pre \c CHAR_BIT \<= \a Order \<= \c std\::numeric_limits\ \::digits \tparam Order The order of the modulo-2 polynomial remainder and one less than the divisor's order. \tparam TruncatedPolynomial The lowest coefficients of the divisor polynomial. The highest-order coefficient is omitted and always assumed to be 1. */ template < int Order, boost::uintmax_t TruncatedPolynomial > class reflected_byte_table_driven_crcs : public crc_table_t { typedef crc_table_t base_type; public: typedef typename base_type::value_type value_type; typedef typename base_type::array_type array_type; /** \brief Compute the updated remainder after reading some bytes The implementation reads from a table to speed-up applying reflecting augmented-CRC updates byte-wise. \param remainder The pre-update remainder; since the bytes are being reflected, this remainder also has to be reflected \param new_dividend_bytes The address where the new bytes start \param new_dividend_byte_count The number of new bytes to read \return The updated, reflected remainder */ static value_type augmented_crc_update( value_type remainder, unsigned char const *new_dividend_bytes, std::size_t new_dividend_byte_count) { static array_type const & table = base_type::get_table(); while ( new_dividend_byte_count-- ) { // Locates the merged partial product based on the leading byte // (which is at the low-order end for reflected remainders) unsigned char const index = remainder & UCHAR_MAX; // Complete the multi-bit reflected modulo-2 polynomial division remainder >>= CHAR_BIT; remainder |= static_cast( *new_dividend_bytes++ ) << ( Order - CHAR_BIT ); remainder ^= table.elems[ index ]; } return remainder; } /** \brief Compute the updated remainder after reading some bytes The implementation reads from a table to speed-up applying reflected unaugmented-CRC updates byte-wise. \param remainder The pre-update remainder; since the bytes are being reflected, this remainder also has to be reflected \param new_dividend_bytes The address where the new bytes start \param new_dividend_byte_count The number of new bytes to read \return The updated, reflected remainder */ static value_type crc_update( value_type remainder, unsigned char const *new_dividend_bytes, std::size_t new_dividend_byte_count) { static array_type const & table = base_type::get_table(); while ( new_dividend_byte_count-- ) { // Locates the merged partial product based on comparing the // leading and incoming bytes unsigned char const index = ( remainder & UCHAR_MAX ) ^ *new_dividend_bytes++; // Complete the multi-bit reflected altered modulo-2 polynomial // division remainder >>= CHAR_BIT; remainder ^= table.elems[ index ]; } return remainder; } }; /** \brief Mix-in class for byte-fed, table-driven CRC algorithms with parameter values at least a byte in width This class template adds member functions #augmented_crc_update and #crc_update to update remainders from new input bytes. The bytes may be reflected before processing, controlled by a compile-time parameter. \pre \c CHAR_BIT \<= \a Order \<= \c std\::numeric_limits\ \::digits \tparam Order The order of the modulo-2 polynomial remainder and one less than the divisor's order. \tparam TruncatedPolynomial The lowest coefficients of the divisor polynomial. The highest-order coefficient is omitted and always assumed to be 1. \tparam Reflect If \c false, read from the highest-order bit from a new input byte and go down, as normal. Otherwise, proceed from the lowest-order bit and go up. */ template < int Order, boost::uintmax_t TruncatedPolynomial, bool Reflect > class byte_table_driven_crcs : public boost::conditional< Reflect, reflected_byte_table_driven_crcs, direct_byte_table_driven_crcs >::type { }; /** \brief A mix-in class that handles direct (i.e. non-reflected) byte-fed CRC algorithms for sub-byte parameters This class template adds member functions #augmented_crc_update and #crc_update to update remainders from new input bytes. The bytes aren't reflected before processing. \pre 0 \< \a Order \< \c CHAR_BIT \tparam Order The order of the modulo-2 polynomial remainder and one less than the divisor's order. \tparam TruncatedPolynomial The lowest coefficients of the divisor polynomial. The highest-order coefficient is omitted and always assumed to be 1. */ template < int Order, boost::uintmax_t TruncatedPolynomial > class direct_sub_byte_crcs : public crc_table_t { typedef crc_table_t base_type; public: typedef typename base_type::width_c width_c; typedef typename base_type::value_type value_type; typedef typename base_type::poly_c poly_c; typedef typename base_type::array_type array_type; /** \brief Compute the updated remainder after reading some bytes The implementation reads from a table to speed-up applying augmented-CRC updates byte-wise. \param remainder The pre-update remainder \param new_dividend_bytes The address where the new bytes start \param new_dividend_byte_count The number of new bytes to read \return The updated remainder \todo Use this function somewhere so I can test it. */ static value_type augmented_crc_update( value_type remainder, unsigned char const *new_dividend_bytes, std::size_t new_dividend_byte_count) { //static array_type const & table = base_type::get_table(); while ( new_dividend_byte_count-- ) { // Without a table, process each byte explicitly augmented_crc_modulo_word_update( width_c::value, remainder, *new_dividend_bytes++, poly_c::value, CHAR_BIT, false ); } return remainder; } /** \brief Compute the updated remainder after reading some bytes The implementation reads from a table to speed-up applying unaugmented-CRC updates byte-wise. \param remainder The pre-update remainder \param new_dividend_bytes The address where the new bytes start \param new_dividend_byte_count The number of new bytes to read \return The updated remainder */ static value_type crc_update( value_type remainder, unsigned char const *new_dividend_bytes, std::size_t new_dividend_byte_count) { //static array_type const & table = base_type::get_table(); while ( new_dividend_byte_count-- ) { // Without a table, process each byte explicitly crc_modulo_word_update( width_c::value, remainder, *new_dividend_bytes++, poly_c::value, CHAR_BIT, false ); } return remainder; } }; /** \brief A mix-in class that handles reflected byte-fed, CRC algorithms for sub-byte parameters This class template adds member functions #augmented_crc_update and #crc_update to update remainders from new input bytes. The bytes are reflected before processing. \pre 0 \< \a Order \< \c CHAR_BIT \tparam Order The order of the modulo-2 polynomial remainder and one less than the divisor's order. \tparam TruncatedPolynomial The lowest coefficients of the divisor polynomial. The highest-order coefficient is omitted and always assumed to be 1. */ template < int Order, boost::uintmax_t TruncatedPolynomial > class reflected_sub_byte_crcs : public crc_table_t { typedef crc_table_t base_type; public: typedef typename base_type::width_c width_c; typedef typename base_type::value_type value_type; typedef typename base_type::poly_c poly_c; typedef typename base_type::array_type array_type; /** \brief Compute the updated remainder after reading some bytes The implementation reads from a table to speed-up applying reflecting augmented-CRC updates byte-wise. \param remainder The pre-update remainder; since the bytes are being reflected, this remainder also has to be reflected \param new_dividend_bytes The address where the new bytes start \param new_dividend_byte_count The number of new bytes to read \return The updated, reflected remainder \todo Use this function somewhere so I can test it. */ static value_type augmented_crc_update( value_type remainder, unsigned char const *new_dividend_bytes, std::size_t new_dividend_byte_count) { //static array_type const & table = base_type::get_table(); remainder = reflect_sub_byte( remainder, width_c::value ); while ( new_dividend_byte_count-- ) { // Without a table, process each byte explicitly augmented_crc_modulo_word_update( width_c::value, remainder, *new_dividend_bytes++, poly_c::value, CHAR_BIT, true ); } remainder = reflect_sub_byte( remainder, width_c::value ); return remainder; } /** \brief Compute the updated remainder after reading some bytes The implementation reads from a table to speed-up applying reflected unaugmented-CRC updates byte-wise. \param remainder The pre-update remainder; since the bytes are being reflected, this remainder also has to be reflected \param new_dividend_bytes The address where the new bytes start \param new_dividend_byte_count The number of new bytes to read \return The updated, reflected remainder */ static value_type crc_update( value_type remainder, unsigned char const *new_dividend_bytes, std::size_t new_dividend_byte_count) { //static array_type const & table = base_type::get_table(); remainder = reflect_sub_byte( remainder, width_c::value ); while ( new_dividend_byte_count-- ) { // Without a table, process each byte explicitly crc_modulo_word_update( width_c::value, remainder, *new_dividend_bytes++, poly_c::value, CHAR_BIT, true ); } remainder = reflect_sub_byte( remainder, width_c::value ); return remainder; } }; /** \brief Mix-in class for byte-fed, table-driven CRC algorithms with sub-byte parameters This class template adds member functions #augmented_crc_update and #crc_update to update remainders from new input bytes. The bytes may be reflected before processing, controlled by a compile-time parameter. \pre 0 \< \a Order \< \c CHAR_BIT \tparam Order The order of the modulo-2 polynomial remainder and one less than the divisor's order. \tparam TruncatedPolynomial The lowest coefficients of the divisor polynomial. The highest-order coefficient is omitted and always assumed to be 1. \tparam Reflect If \c false, read from the highest-order bit from a new input byte and go down, as normal. Otherwise, proceed from the lowest-order bit and go up. */ template < int Order, boost::uintmax_t TruncatedPolynomial, bool Reflect > class sub_byte_crcs : public boost::conditional< Reflect, reflected_sub_byte_crcs, direct_sub_byte_crcs >::type { }; /** This class template adds member functions #augmented_crc_update and #crc_update to update remainders from new input bytes. The bytes may be reflected before processing, controlled by a compile-time parameter. \pre 0 \< \a Order \<= \c std\::numeric_limits\\::digits \tparam Order The order of the modulo-2 polynomial remainder and one less than the divisor's order. \tparam TruncatedPolynomial The lowest coefficients of the divisor polynomial. The highest-order coefficient is omitted and always assumed to be 1. \tparam Reflect If \c false, read from the highest-order bit from a new input byte and go down, as normal. Otherwise, proceed from the lowest-order bit and go up. \tparam Id An extra differentiator if multiple copies of this class template are mixed-in as base classes. Defaults to 0 if omitted. */ template < int Order, boost::uintmax_t TruncatedPolynomial, bool Reflect, int Id > class crc_driver : public boost::conditional< (Order < CHAR_BIT), sub_byte_crcs, byte_table_driven_crcs >::type { public: /** \brief The type to check for ID This is a Boost integral constant indicating what ID number this instantiation used. */ typedef boost::integral_constant id_type; }; } // namespace detail //! \endcond // Simple CRC class function definitions -----------------------------------// /** Constructs a \c crc_basic object with at least the required parameters to a particular CRC formula to be processed upon receiving input. \param[in] truncated_polynomial The lowest coefficients of the divisor polynomial. The highest-order coefficient is omitted and always assumed to be 1. (\e Poly from the RMCA) \param[in] initial_remainder The (unaugmented) initial state of the polynomial remainder. Defaults to \c 0 if omitted. (\e Init from the RMCA) \param[in] final_xor_value The (XOR) bit-mask to be applied to the output remainder, after possible reflection but before returning. Defaults to \c 0 (i.e. no bit changes) if omitted. (\e XorOut from the RMCA) \param[in] reflect_input If \c true, input bytes are read lowest-order bit first, otherwise highest-order bit first. Defaults to \c false if omitted. (\e RefIn from the RMCA) \param[in] reflect_remainder If \c true, the output remainder is reflected before the XOR-mask. Defaults to \c false if omitted. (\e RefOut from the RMCA) \post truncated_polynomial == this->get_truncated_polynominal() \post initial_remainder == this->get_initial_remainder() \post final_xor_value == this->get_final_xor_value() \post reflect_input == this->get_reflect_input() \post reflect_remainder == this->get_reflect_remainder() \post initial_remainder == this->get_interim_remainder() \post (reflect_remainder ? REFLECT(initial_remainder) : initial_remainder) ^ final_xor_value == this->checksum() */ template < std::size_t Bits > inline crc_basic::crc_basic ( value_type truncated_polynomial, value_type initial_remainder, // = 0 value_type final_xor_value, // = 0 bool reflect_input, // = false bool reflect_remainder // = false ) : rem_( initial_remainder ), poly_( truncated_polynomial ) , init_( initial_remainder ), final_( final_xor_value ) , rft_in_( reflect_input ), rft_out_( reflect_remainder ) { } /** Returns a representation of the polynomial divisor. The value of the 2i bit is the value of the coefficient of the polynomial's xi term. The omitted bit for x(#bit_count) term is always 1. \return The bit-packed list of coefficients. If the bit-length of #value_type exceeds #bit_count, the values of higher-placed bits should be ignored (even any for x(#bit_count)) since they're unregulated. */ template < std::size_t Bits > inline typename crc_basic::value_type crc_basic::get_truncated_polynominal ( ) const { return poly_; } /** Returns a representation of the polynomial remainder before any input has been submitted. The value of the 2i bit is the value of the coefficient of the polynomial's xi term. \return The bit-packed list of coefficients. If the bit-length of #value_type exceeds #bit_count, the values of higher-placed bits should be ignored since they're unregulated. */ template < std::size_t Bits > inline typename crc_basic::value_type crc_basic::get_initial_remainder ( ) const { return init_; } /** Returns the mask to be used during creation of a checksum. The mask is used for an exclusive-or (XOR) operation applied bit-wise to the interim remainder representation (after any reflection, if #get_reflect_remainder() returns \c true). \return The bit-mask. If the bit-length of #value_type exceeds #bit_count, the values of higher-placed bits should be ignored since they're unregulated. */ template < std::size_t Bits > inline typename crc_basic::value_type crc_basic::get_final_xor_value ( ) const { return final_; } /** Returns a whether or not a submitted byte will be \"reflected\" before it is used to update the interim remainder. Only the byte-wise operations #process_byte, #process_block, and #process_bytes are affected. \retval true Input bytes will be read starting from the lowest-order bit. \retval false Input bytes will be read starting from the highest-order bit. */ template < std::size_t Bits > inline bool crc_basic::get_reflect_input ( ) const { return rft_in_; } /** Indicates if the interim remainder will be \"reflected\" before it is passed to the XOR-mask stage when returning a checksum. \retval true The interim remainder is reflected before further work. \retval false The interim remainder is applied to the XOR-mask as-is. */ template < std::size_t Bits > inline bool crc_basic::get_reflect_remainder ( ) const { return rft_out_; } /** Returns a representation of the polynomial remainder after all the input submissions since construction or the last #reset call. The value of the 2i bit is the value of the coefficient of the polynomial's xi term. If CRC processing gets interrupted here, retain the value returned, and use it to start up the next CRC computer where you left off (with #reset(value_type) or construction). The next computer has to have its other parameters compatible with this computer. \return The bit-packed list of coefficients. If the bit-length of #value_type exceeds #bit_count, the values of higher-placed bits should be ignored since they're unregulated. No output processing (reflection or XOR mask) has been applied to the value. */ template < std::size_t Bits > inline typename crc_basic::value_type crc_basic::get_interim_remainder ( ) const { return rem_ & detail::low_bits_mask_c::value; } /** Changes the interim polynomial remainder to \a new_rem, purging any influence previously submitted input has had. The value of the 2i bit is the value of the coefficient of the polynomial's xi term. \param[in] new_rem The (unaugmented) state of the polynomial remainder starting from this point, with no output processing applied. \post new_rem == this->get_interim_remainder() \post ((this->get_reflect_remainder() ? REFLECT(new_rem) : new_rem) ^ this->get_final_xor_value()) == this->checksum() */ template < std::size_t Bits > inline void crc_basic::reset ( value_type new_rem ) { rem_ = new_rem; } /** Changes the interim polynomial remainder to the initial remainder given during construction, purging any influence previously submitted input has had. The value of the 2i bit is the value of the coefficient of the polynomial's xi term. \post this->get_initial_remainder() == this->get_interim_remainder() \post ((this->get_reflect_remainder() ? REFLECT(this->get_initial_remainder()) : this->get_initial_remainder()) ^ this->get_final_xor_value()) == this->checksum() */ template < std::size_t Bits > inline void crc_basic::reset ( ) { this->reset( this->get_initial_remainder() ); } /** Updates the interim remainder with a single altered-CRC-division step. \param[in] bit The new input bit. \post The interim remainder is updated though a modulo-2 polynomial division, where the division steps are altered for unaugmented CRCs. */ template < std::size_t Bits > inline void crc_basic::process_bit ( bool bit ) { detail::crc_modulo_update( bit_count, rem_, bit, poly_ ); } /** Updates the interim remainder with several altered-CRC-division steps. Each bit is processed separately, starting from the one at the 2bit_length - 1 place, then proceeding down to the lowest-placed bit. Any order imposed by this->get_reflect_input() is ignored. \pre 0 \< \a bit_length \<= \c CHAR_BIT \param[in] bits The byte containing the new input bits. \param[in] bit_length The number of bits in the byte to be read. \post The interim remainder is updated though \a bit_length modulo-2 polynomial divisions, where the division steps are altered for unaugmented CRCs. */ template < std::size_t Bits > void crc_basic::process_bits ( unsigned char bits, std::size_t bit_length ) { // ignore the bits above the ones we want bits <<= CHAR_BIT - bit_length; // compute the CRC for each bit, starting with the upper ones unsigned char const high_bit_mask = 1u << ( CHAR_BIT - 1u ); for ( std::size_t i = bit_length ; i > 0u ; --i, bits <<= 1u ) { process_bit( (bits & high_bit_mask) != 0 ); } } /** Updates the interim remainder with a byte's worth of altered-CRC-division steps. The bits within the byte are processed from the highest place down if this->get_reflect_input() is \c false, and lowest place up otherwise. \param[in] byte The new input byte. \post The interim remainder is updated though \c CHAR_BIT modulo-2 polynomial divisions, where the division steps are altered for unaugmented CRCs. */ template < std::size_t Bits > inline void crc_basic::process_byte ( unsigned char byte ) { process_bits( (rft_in_ ? detail::reflect_byte( byte ) : byte), CHAR_BIT ); } /** Updates the interim remainder with several bytes' worth of altered-CRC-division steps. The bits within each byte are processed from the highest place down if this->get_reflect_input() is \c false, and lowest place up otherwise. The bytes themselves are processed starting from the one pointed by \a bytes_begin until \a bytes_end is reached through forward iteration, treating the two pointers as if they point to unsigned char objects. \pre \a bytes_end has to equal \a bytes_begin if the latter is \c NULL or otherwise doesn't point to a valid buffer. \pre \a bytes_end, if not equal to \a bytes_begin, has to point within or one-byte-past the same buffer \a bytes_begin points into. \pre \a bytes_end has to be reachable from \a bytes_begin through a finite number of forward byte-pointer increments. \param[in] bytes_begin The address where the memory block begins. \param[in] bytes_end Points to one-byte past the address of the memory block's last byte, or \a bytes_begin if no bytes are to be read. \post The interim remainder is updated though CHAR_BIT * (((unsigned char const *) bytes_end) - ((unsigned char const *) bytes_begin)) modulo-2 polynomial divisions, where the division steps are altered for unaugmented CRCs. */ template < std::size_t Bits > void crc_basic::process_block ( void const * bytes_begin, void const * bytes_end ) { for ( unsigned char const * p = static_cast(bytes_begin) ; p < bytes_end ; ++p ) { process_byte( *p ); } } /** Updates the interim remainder with several bytes' worth of altered-CRC-division steps. The bits within each byte are processed from the highest place down if this->get_reflect_input() is \c false, and lowest place up otherwise. The bytes themselves are processed starting from the one pointed by \a buffer, forward-iterated (as if the pointed-to objects were of unsigned char) until \a byte_count bytes are read. \pre \a byte_count has to equal 0 if \a buffer is \c NULL or otherwise doesn't point to valid memory. \pre If \a buffer points within valid memory, then that block has to have at least \a byte_count more valid bytes allocated from that point. \param[in] buffer The address where the memory block begins. \param[in] byte_count The number of bytes in the memory block. \post The interim remainder is updated though CHAR_BIT * byte_count modulo-2 polynomial divisions, where the division steps are altered for unaugmented CRCs. */ template < std::size_t Bits > inline void crc_basic::process_bytes ( void const * buffer, std::size_t byte_count ) { unsigned char const * const b = static_cast( buffer ); process_block( b, b + byte_count ); } /** Computes the checksum of all the submitted bits since construction or the last call to #reset. The checksum will be the raw checksum, i.e. the (interim) remainder after all the modulo-2 polynomial division, plus any output processing. \return (this->get_reflect_remainder() ? REFLECT(this->get_interim_remainder()) : this->get_interim_remainder()) ^ this->get_final_xor_value() \note Since checksums are meant to be compared, any higher-placed bits (when the bit-length of #value_type exceeds #bit_count) will be set to 0. */ template < std::size_t Bits > inline typename crc_basic::value_type crc_basic::checksum ( ) const { return ( (rft_out_ ? detail::reflect_unsigned( rem_, bit_count ) : rem_) ^ final_ ) & detail::low_bits_mask_c::value; } // Optimized CRC class function definitions --------------------------------// // Macro to compact code #define BOOST_CRC_OPTIMAL_NAME crc_optimal /** Constructs a \c crc_optimal object with a particular CRC formula to be processed upon receiving input. The initial remainder may be overridden. \param[in] init_rem The (unaugmented) initial state of the polynomial remainder. Defaults to #initial_remainder if omitted. \post #truncated_polynominal == this->get_truncated_polynominal() \post #initial_remainder == this->get_initial_remainder() \post #final_xor_value == this->get_final_xor_value() \post #reflect_input == this->get_reflect_input() \post #reflect_remainder == this->get_reflect_remainder() \post init_rem == this->get_interim_remainder() \post (#reflect_remainder ? REFLECT(init_rem) : init_rem) ^ #final_xor_value == this->checksum() */ template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly, BOOST_CRC_PARM_TYPE InitRem, BOOST_CRC_PARM_TYPE FinalXor, bool ReflectIn, bool ReflectRem > inline BOOST_CRC_OPTIMAL_NAME::crc_optimal ( value_type init_rem // = initial_remainder ) : rem_( reflect_i_type::reflect_q(init_rem) ) { } //! \copydetails boost::crc_basic::get_truncated_polynominal template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly, BOOST_CRC_PARM_TYPE InitRem, BOOST_CRC_PARM_TYPE FinalXor, bool ReflectIn, bool ReflectRem > inline typename BOOST_CRC_OPTIMAL_NAME::value_type BOOST_CRC_OPTIMAL_NAME::get_truncated_polynominal ( ) const { return truncated_polynominal; } //! \copydetails boost::crc_basic::get_initial_remainder template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly, BOOST_CRC_PARM_TYPE InitRem, BOOST_CRC_PARM_TYPE FinalXor, bool ReflectIn, bool ReflectRem > inline typename BOOST_CRC_OPTIMAL_NAME::value_type BOOST_CRC_OPTIMAL_NAME::get_initial_remainder ( ) const { return initial_remainder; } //! \copydetails boost::crc_basic::get_final_xor_value template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly, BOOST_CRC_PARM_TYPE InitRem, BOOST_CRC_PARM_TYPE FinalXor, bool ReflectIn, bool ReflectRem > inline typename BOOST_CRC_OPTIMAL_NAME::value_type BOOST_CRC_OPTIMAL_NAME::get_final_xor_value ( ) const { return final_xor_value; } //! \copydetails boost::crc_basic::get_reflect_input template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly, BOOST_CRC_PARM_TYPE InitRem, BOOST_CRC_PARM_TYPE FinalXor, bool ReflectIn, bool ReflectRem > inline bool BOOST_CRC_OPTIMAL_NAME::get_reflect_input ( ) const { return reflect_input; } //! \copydetails boost::crc_basic::get_reflect_remainder template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly, BOOST_CRC_PARM_TYPE InitRem, BOOST_CRC_PARM_TYPE FinalXor, bool ReflectIn, bool ReflectRem > inline bool BOOST_CRC_OPTIMAL_NAME::get_reflect_remainder ( ) const { return reflect_remainder; } //! \copydetails boost::crc_basic::get_interim_remainder template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly, BOOST_CRC_PARM_TYPE InitRem, BOOST_CRC_PARM_TYPE FinalXor, bool ReflectIn, bool ReflectRem > inline typename BOOST_CRC_OPTIMAL_NAME::value_type BOOST_CRC_OPTIMAL_NAME::get_interim_remainder ( ) const { // Interim remainder should be _un_-reflected, so we have to undo it. return reflect_i_type::reflect_q( rem_ ) & detail::low_bits_mask_c::value; } /** Changes the interim polynomial remainder to \a new_rem, purging any influence previously submitted input has had. The value of the 2i bit is the value of the coefficient of the polynomial's xi term. \param[in] new_rem The (unaugmented) state of the polynomial remainder starting from this point, with no output processing applied. Defaults to this->get_initial_remainder() if omitted. \post new_rem == this->get_interim_remainder() \post ((this->get_reflect_remainder() ? REFLECT(new_rem) : new_rem) ^ this->get_final_xor_value()) == this->checksum() */ template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly, BOOST_CRC_PARM_TYPE InitRem, BOOST_CRC_PARM_TYPE FinalXor, bool ReflectIn, bool ReflectRem > inline void BOOST_CRC_OPTIMAL_NAME::reset ( value_type new_rem // = initial_remainder ) { rem_ = reflect_i_type::reflect_q( new_rem ); } /** \copydetails boost::crc_basic::process_byte \note Any modulo-2 polynomial divisions may use a table of pre-computed remainder changes (as XOR masks) to speed computation when reading data byte-wise. */ template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly, BOOST_CRC_PARM_TYPE InitRem, BOOST_CRC_PARM_TYPE FinalXor, bool ReflectIn, bool ReflectRem > inline void BOOST_CRC_OPTIMAL_NAME::process_byte ( unsigned char byte ) { process_bytes( &byte, sizeof(byte) ); } /** \copydetails boost::crc_basic::process_block \note Any modulo-2 polynomial divisions may use a table of pre-computed remainder changes (as XOR masks) to speed computation when reading data byte-wise. */ template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly, BOOST_CRC_PARM_TYPE InitRem, BOOST_CRC_PARM_TYPE FinalXor, bool ReflectIn, bool ReflectRem > inline void BOOST_CRC_OPTIMAL_NAME::process_block ( void const * bytes_begin, void const * bytes_end ) { process_bytes( bytes_begin, static_cast(bytes_end) - static_cast(bytes_begin) ); } /** \copydetails boost::crc_basic::process_bytes \note Any modulo-2 polynomial divisions may use a table of pre-computed remainder changes (as XOR masks) to speed computation when reading data byte-wise. */ template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly, BOOST_CRC_PARM_TYPE InitRem, BOOST_CRC_PARM_TYPE FinalXor, bool ReflectIn, bool ReflectRem > inline void BOOST_CRC_OPTIMAL_NAME::process_bytes ( void const * buffer, std::size_t byte_count ) { rem_ = crc_table_type::crc_update( rem_, static_cast(buffer), byte_count ); } //! \copydetails boost::crc_basic::checksum template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly, BOOST_CRC_PARM_TYPE InitRem, BOOST_CRC_PARM_TYPE FinalXor, bool ReflectIn, bool ReflectRem > inline typename BOOST_CRC_OPTIMAL_NAME::value_type BOOST_CRC_OPTIMAL_NAME::checksum ( ) const { return ( reflect_o_type::reflect_q(rem_) ^ get_final_xor_value() ) & detail::low_bits_mask_c::value; } /** Updates the interim remainder with a byte's worth of altered-CRC-division steps. The bits within the byte are processed from the highest place down if this->get_reflect_input() is \c false, and lowest place up otherwise. This function is meant to present a function-object interface to code that wants to process a stream of bytes with std::for_each or similar range-processing algorithms. Since some of these algorithms takes their function object by value, make sure to copy back the result to this object so the updates can be remembered. \param[in] byte The new input byte. \post The interim remainder is updated though \c CHAR_BIT modulo-2 polynomial divisions, where the division steps are altered for unaugmented CRCs. \note Any modulo-2 polynomial divisions may use a table of pre-computed remainder changes (as XOR masks) to speed computation when reading data byte-wise. */ template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly, BOOST_CRC_PARM_TYPE InitRem, BOOST_CRC_PARM_TYPE FinalXor, bool ReflectIn, bool ReflectRem > inline void BOOST_CRC_OPTIMAL_NAME::operator () ( unsigned char byte ) { process_byte( byte ); } /** Computes the checksum of all the submitted bits since construction or the last call to #reset. The checksum will be the raw checksum, i.e. the (interim) remainder after all the modulo-2 polynomial division, plus any output processing. This function is meant to present a function-object interface to code that wants to receive data like std::generate_n or similar data-processing algorithms. Note that if this object is used as a generator multiple times without an intervening mutating operation, the same value will always be returned. \return (this->get_reflect_remainder() ? REFLECT(this->get_interim_remainder()) : this->get_interim_remainder()) ^ this->get_final_xor_value() \note Since checksums are meant to be compared, any higher-placed bits (when the bit-length of #value_type exceeds #bit_count) will be set to 0. */ template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly, BOOST_CRC_PARM_TYPE InitRem, BOOST_CRC_PARM_TYPE FinalXor, bool ReflectIn, bool ReflectRem > inline typename BOOST_CRC_OPTIMAL_NAME::value_type BOOST_CRC_OPTIMAL_NAME::operator () ( ) const { return checksum(); } // CRC computation function definition -------------------------------------// /** Computes the polynomial remainder of a CRC run, assuming that \a buffer and \a byte_count describe a memory block representing the polynomial dividend. The division steps are altered so the result directly gives a checksum, without need to augment the memory block with scratch-space bytes. The first byte is considered the highest order, going down for subsequent bytes. \pre 0 \< \a Bits \<= \c std\::numeric_limits\\::digits \tparam Bits The order of the modulo-2 polynomial divisor. (\e Width from the RMCA) \tparam TruncPoly The lowest coefficients of the divisor polynomial. The highest-order coefficient is omitted and always assumed to be 1. (\e Poly from the RMCA) \tparam InitRem The (unaugmented) initial state of the polynomial remainder. (\e Init from the RMCA) \tparam FinalXor The (XOR) bit-mask to be applied to the output remainder, after possible reflection but before returning. (\e XorOut from the RMCA) \tparam ReflectIn If \c True, input bytes are read lowest-order bit first, otherwise highest-order bit first. (\e RefIn from the RMCA) \tparam ReflectRem If \c True, the output remainder is reflected before the XOR-mask. (\e RefOut from the RMCA) \param[in] buffer The address where the memory block begins. \param[in] byte_count The number of bytes in the memory block. \return The checksum, which is the last (interim) remainder plus any output processing. \note Unaugmented-style CRC runs perform modulo-2 polynomial division in an altered order. The trailing \a Bits number of zero-valued bits needed to extracted an (unprocessed) checksum is virtually moved to near the beginning of the message. This is OK since the XOR operation is commutative and associative. It also means that you can get a checksum anytime. Since data is being read byte-wise, a table of pre-computed remainder changes (as XOR masks) can be used to speed computation. */ template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly, BOOST_CRC_PARM_TYPE InitRem, BOOST_CRC_PARM_TYPE FinalXor, bool ReflectIn, bool ReflectRem > inline typename uint_t::fast crc ( void const * buffer, std::size_t byte_count ) { BOOST_CRC_OPTIMAL_NAME computer; computer.process_bytes( buffer, byte_count ); return computer.checksum(); } // Augmented-message CRC computation function definition -------------------// /** Computes the polynomial remainder of a CRC run, assuming that \a buffer and \a byte_count describe a memory block representing the polynomial dividend. The first byte is considered the highest order, going down for subsequent bytes. Within a byte, the highest-order bit is read first (corresponding to \e RefIn = \c False in the RMCA). Check the other parts of this function's documentation to see how a checksum can be gained and/or used. \pre 0 \< \a Bits \<= \c std\::numeric_limit\\::digits \tparam Bits The order of the modulo-2 polynomial divisor. (\e Width from the RMCA) \tparam TruncPoly The lowest coefficients of the divisor polynomial. The highest-order coefficient is omitted and always assumed to be 1. (\e Poly from the RMCA) \param[in] buffer The address where the memory block begins. \param[in] byte_count The number of bytes in the memory block. \param[in] initial_remainder The initial state of the polynomial remainder, defaulting to zero if omitted. If you are reading a memory block in multiple runs, put the return value of the previous run here. (Note that initial-remainders given by RMCA parameter lists, as \e Init, assume that the initial remainder is in its \b unaugmented state, so you would need to convert the value to make it suitable for this function. I currently don't provide a conversion routine.) \return The interim remainder, if no augmentation is used. A special value if augmentation is used (see the notes). No output processing is done on the value. (In RMCA terms, \e RefOut is \c False and \e XorOut is \c 0.) \note Augmented-style CRC runs use straight-up modulo-2 polynomial division. Since data is being read byte-wise, a table of pre-computed remainder changes (as XOR masks) can be used to speed computation. \note Reading just a memory block will yield an interim remainder, and not the final checksum. To get that checksum, allocate \a Bits / \c CHAR_BIT bytes directly after the block and fill them with zero values, then extend \a byte_count to include those extra bytes. A data block is corrupt if the return value doesn't equal your separately given checksum. \note Another way to perform a check is use the zero-byte extension method, but replace the zero values with your separately-given checksum. The checksum must be loaded in big-endian order. Here corruption, in either the data block or the given checksum, is confirmed if the return value is not zero. \note The two checksum techniques assume the CRC-run is performed bit-wise, while this function works byte-wise. That means that the techniques can be used only if \c CHAR_BIT divides \a Bits evenly! */ template < std::size_t Bits, BOOST_CRC_PARM_TYPE TruncPoly > typename uint_t::fast augmented_crc ( void const * buffer, std::size_t byte_count, typename uint_t::fast initial_remainder // = 0u ) { return detail::low_bits_mask_c::value & detail::byte_table_driven_crcs:: augmented_crc_update( initial_remainder, static_cast(buffer), byte_count ); } } // namespace boost // Undo header-private macros #undef BOOST_CRC_OPTIMAL_NAME #undef BOOST_CRC_PARM_TYPE #endif // BOOST_CRC_HPP