test_pcompare_IntegerRanges <- function() { x1 <- IRanges(6:16, width=4) y <- IRanges(11, 14) target <- c(-6:-4, -4L, -4L, 0L, 4L, 4L, 4:6) checkIdentical(target, pcompare(x1, y)) checkIdentical(-target, pcompare(y, x1)) x2 <- IRanges(4:16, width=6) target <- c(-6:-4, -4L, -4L, -3L, -2L, 1L, 4L, 4L, 4:6) checkIdentical(target, pcompare(x2, y)) checkIdentical(-target, pcompare(y, x2)) x3 <- IRanges(8:16, width=2) target <- c(-6:-4, -1L, 2L, 3L, 4:6) checkIdentical(target, pcompare(x3, y)) checkIdentical(-target, pcompare(y, x3)) ## Moving a 0-width range over a non 0-width range. ## Note that when the end of the 0-width range is equal to the start of ## the non 0-width range minus 1, returning code -5 (which describes ## a situation of adjacent ranges) seems appropriate. ## However, one could argue that returning code -1 (which describes a ## situation where one range is inside the other) would also be ## appropriate, because, in that case, the two ranges have the same start. ## So the question really is whether the 0-width range should be considered ## *outside* or *inside* the non 0-width range. ## It's an arbitrary choice and we chose the former. x0 <- IRanges(10:16, width=0) target <- c(-6:-5, 2L, 2L, 2L, 5:6) checkIdentical(target, pcompare(x0, y)) checkIdentical(-target, pcompare(y, x0)) ## Moving a 0-width range over a 0-width range. y0 <- IRanges(13, 12) target <- c(-6L, -6L, -6L, 0L, 6L, 6L, 6L) checkIdentical(target, pcompare(x0, y0)) checkIdentical(-target, pcompare(y0, x0)) } test_order_IntegerRanges <- function() { ir1 <- IRanges(c(2,5,1,5), c(3,7,3,6)) ir1.sort <- IRanges(c(1,2,5,5), c(3,3,6,7)) ir1.rev <- IRanges(c(5,5,2,1), c(7,6,3,3)) checkIdentical(sort(ir1), ir1.sort) checkIdentical(sort(ir1, decreasing=TRUE), ir1.rev) checkException(sort(ir1, decreasing=NA), silent = TRUE) }