library(quantreg) rq.fit.panel <- function(X,y,s,w=c(1/3,1/3,1/3),taus=c(0.25,0.5,0.75),lambda = 0){ # prototype function for fixed effect panel data fitting of QR models # the vector s is a strata indicator assumed (so far) to be a one-way layout # NB: # 1. The value of the shrinkage parameter lambda is an open research problem in # the simplest homogeneous settings it should be the ratio of the scale parameters # of the fixed effects and the idiosyncratic errors # 2. On return the coefficient vector has m*p + n elements where m is the number # quantiles being estimated, p is the number of columns of X, and n is the # number of distinct values of s. The first m*p coefficients are the # slope estimates, and the last n are the "fixed effects" # 3. Like all shrinkage (regularization) estimators, asymptotic inference is somewhat # problematic... so the bootstrap is the natural first resort. require(SparseM) require(quantreg) m <- length(w) if(m != length(taus)) stop("length of w and taus must match") X <- as.matrix(X) p <- ncol(X) n <- length(levels(as.factor(s))) N <- length(y) if(N != length(s) || N != nrow(X)) stop("dimensions of y,X,s must match") Z <- as.matrix.csr(model.matrix(~as.factor(s)-1)) Fidelity <- cbind(as(w,"matrix.diag.csr") %x% X, cbind(w) %x% Z) Penalty <- cbind(as.matrix.csr(0,n,m*p),lambda*as(n,"matrix.diag.csr")) D <- rbind(Fidelity,Penalty) y <- c(w %x% y,rep(0,n)) a <- c((w*(1-taus)) %x% (t(X)%*%rep(1,N)), sum(w*(1-taus)) * (t(Z) %*% rep(1,N)) + lambda * rep(1,n)) rq.fit.sfn(D,y,rhs=a) } n<-3 T<-50 nT<-n*T u1<-rnorm(T) u2<-rnorm(T) u3<-rnorm(T) x1<-rnorm(T,1,0.85) x2<-rnorm(T,4,1) x3<-rnorm(T,7,1) beta1<-1 beta2<-0.5 y1<- 0+beta1*x1+(beta2*x1)*u1 y2<- 4+beta1*x2+(beta2*x2)*u2 y3<- 8+beta1*x3+(beta2*x3)*u3 plot(c(0,9), c(0,25), type='n', xlab=expression(x[it]), ylab=expression(y[it])) points(x1,y1,pch=15) points(x2,y2,pch=15,col="blue") points(x3,y3,pch=15,col="red") legend(1,17,paste("i = ",1:3,sep = ""),pch = 15, col = c("black","blue","red")) ya<-c(y1,y2,y3) xa<-c(x1,x2,x3) # Naive cross-section QR taus <- c(.25,0.5,.75) xx <- seq(min(xa),max(xa),0.25) f <- coef(rq(ya~xa,tau=taus)) yy <- cbind(1,xx)%*%f for(i in 1:3) lines(xx,yy[,i],col = "grey") # Fixed effect QR s <- rep(1:n,rep(T,n)) fp<-rq.fit.panel(xa,ya,s)$coef bhat <- fp[1:3] fehat <- fp[4:6] xx1 <- seq(min(x1),max(x1),0.25) for(i in 1:3){ yy1 <- fehat[1] + bhat[i] * xx1 lines(xx1,yy1,col = "black") } xx2 <- seq(min(x2),max(x2),0.25) for(i in 1:3){ yy2 <- fehat[2] + bhat[i] * xx2 lines(xx2,yy2,col = "blue") } xx3 <- seq(min(x3),max(x3),0.25) for(i in 1:3){ yy3 <- fehat[3] + bhat[i] * xx3 lines(xx3,yy3,col = "red") }