|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectjml.clustering.Clustering
public abstract class Clustering
Abstract class for clustering algorithms.
Field Summary | |
---|---|
protected org.apache.commons.math.linear.RealMatrix |
centers
Cluster matrix (nFeature x nClus), column i is the projector for class i. |
protected org.apache.commons.math.linear.RealMatrix |
dataMatrix
Data matrix (nFeature x nSample), each column is a feature vector |
protected org.apache.commons.math.linear.RealMatrix |
indicatorMatrix
Cluster indicator matrix (nSample x nClus). |
int |
nClus
Number of clusters. |
int |
nFeature
Number of features. |
int |
nSample
Number of samples. |
Constructor Summary | |
---|---|
Clustering()
Default constructor for this clustering algorithm. |
|
Clustering(ClusteringOptions clusteringOptions)
Constructor for this clustering algorithm initialized with options wrapped in a ClusteringOptions object. |
|
Clustering(int nClus)
Constructor for this clustering algorithm given number of clusters to be set. |
Method Summary | |
---|---|
abstract void |
clustering()
Do clustering. |
void |
clustering(org.apache.commons.math.linear.RealMatrix G0)
Do clustering with a specified initializer. |
void |
feedData(double[][] data)
Feed training data for this feature selection algorithm. |
void |
feedData(org.apache.commons.math.linear.RealMatrix dataMatrix)
Feed training data for this clustering algorithm. |
static double |
getAccuracy(org.apache.commons.math.linear.RealMatrix G,
org.apache.commons.math.linear.RealMatrix groundTruth)
Evaluating the clustering performance of this clustering algorithm by using the ground truth. |
org.apache.commons.math.linear.RealMatrix |
getCenters()
Get cluster centers. |
org.apache.commons.math.linear.RealMatrix |
getData()
Fetch data matrix. |
org.apache.commons.math.linear.RealMatrix |
getIndicatorMatrix()
Get cluster indicator matrix. |
void |
initialize(org.apache.commons.math.linear.RealMatrix G0)
Initialize the indicator matrix. |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
---|
public int nClus
public int nFeature
public int nSample
protected org.apache.commons.math.linear.RealMatrix dataMatrix
protected org.apache.commons.math.linear.RealMatrix indicatorMatrix
protected org.apache.commons.math.linear.RealMatrix centers
Constructor Detail |
---|
public Clustering()
public Clustering(ClusteringOptions clusteringOptions)
ClusteringOptions
object.
clusteringOptions
- clustering optionspublic Clustering(int nClus)
nClus
- number of clustersMethod Detail |
---|
public void feedData(org.apache.commons.math.linear.RealMatrix dataMatrix)
dataMatrix
- a d x n data matrix with each column being
a data examplepublic void feedData(double[][] data)
data
- a d x n 2D double
array with each
column being a data examplepublic void initialize(org.apache.commons.math.linear.RealMatrix G0)
G0
- initial indicator matrixpublic abstract void clustering()
public void clustering(org.apache.commons.math.linear.RealMatrix G0)
G0
- initial indicator matrix, if null random initialization
will be usedpublic org.apache.commons.math.linear.RealMatrix getData()
public org.apache.commons.math.linear.RealMatrix getCenters()
public org.apache.commons.math.linear.RealMatrix getIndicatorMatrix()
public static double getAccuracy(org.apache.commons.math.linear.RealMatrix G, org.apache.commons.math.linear.RealMatrix groundTruth)
G
- predicted cluster indicator matrixgroundTruth
- true cluster assignments
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |