design(salmon$clean$dds) <- deseq_design
salmon$clean$dds <- DESeq(salmon$clean$dds, minReplicatesForReplace = 5)
salmon$clean$de <- list()
salmon$clean$de$ts <- list()
salmon$clean$de$ts$lfc_0 <- results(
salmon$clean$dds,
contrast = list(c("clinical_variantSporadic", "clinical_variantEndemic"),
c("clinical_variantCentroblast")))
summary(salmon$clean$de$ts$lfc_0)
out of 36655 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 10858, 30%
LFC < 0 (down) : 9321, 25%
outliers [1] : 0, 0%
low counts [2] : 0, 0%
(mean count < 1)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
plotMA(salmon$clean$de$ts$lfc_0, ylim = c(-5, 5))
salmon$clean$de$ts$lfc_1.5 <- results(
salmon$clean$dds,
contrast = list(c("clinical_variantSporadic", "clinical_variantEndemic"),
c("clinical_variantCentroblast")),
lfcThreshold = 1.5)
summary(salmon$clean$de$ts$lfc_1.5)
out of 36655 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 1383, 3.8%
LFC < 0 (down) : 846, 2.3%
outliers [1] : 0, 0%
low counts [2] : 1422, 3.9%
(mean count < 3)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
plotMA(salmon$clean$de$ts$lfc_1.5, ylim = c(-5, 5))
salmon$clean$de$ebv$lfc_0 <- results(
salmon$clean$dds,
contrast = list(c("ebv_statusPositive"),
c("ebv_statusNegative")))
summary(salmon$clean$de$ebv$lfc_0)
out of 36655 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 2507, 6.8%
LFC < 0 (down) : 2357, 6.4%
outliers [1] : 0, 0%
low counts [2] : 0, 0%
(mean count < 1)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
plotMA(salmon$clean$de$ebv$lfc_0, ylim = c(-5, 5))
salmon$clean$de$ebv$lfc_1.5 <- results(
salmon$clean$dds,
contrast = list(c("ebv_statusPositive"),
c("ebv_statusNegative")),
lfcThreshold = 1.5)
summary(salmon$clean$de$ebv$lfc_1.5)
out of 36655 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 57, 0.16%
LFC < 0 (down) : 18, 0.049%
outliers [1] : 0, 0%
low counts [2] : 0, 0%
(mean count < 1)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
plotMA(salmon$clean$de$ebv$lfc_1.5, ylim = c(-5, 5))
salmon$clean$de$cv$lfc_0 <- results(
salmon$clean$dds,
contrast = list(c("clinical_variantEndemic"),
c("clinical_variantSporadic")))
summary(salmon$clean$de$cv$lfc_0)
out of 36655 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 3589, 9.8%
LFC < 0 (down) : 4027, 11%
outliers [1] : 0, 0%
low counts [2] : 0, 0%
(mean count < 1)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
plotMA(salmon$clean$de$cv$lfc_0, ylim = c(-5, 5))
salmon$clean$de$cv$lfc_1.5 <- results(
salmon$clean$dds,
contrast = list(c("clinical_variantEndemic"),
c("clinical_variantSporadic")),
lfcThreshold = 1.5)
summary(salmon$clean$de$cv$lfc_1.5)
out of 36655 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 14, 0.038%
LFC < 0 (down) : 25, 0.068%
outliers [1] : 0, 0%
low counts [2] : 3554, 9.7%
(mean count < 5)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
plotMA(salmon$clean$de$cv$lfc_1.5, ylim = c(-5, 5))